|
|
- \chapter{Metodi}
- \label{cap:methods}
- %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%%
- \section{Stabilizzazione meccanica}
- \label{sec:stabilization}
-
- Nonostante l'isolamento meccanico fornito dagli elastomeri e dal
- tavolo ottico la posizione del campione rispetto al centro
- dell'obiettivo e la quota del piano focale sono soggette a
- fluttuazioni e derive.
- Gli effetti più evidenti e rilevabili sono rapide oscillazioni della
- posizione del campione dovute a vibrazioni acustiche residue e una
- progressive deriva rispetto alla posizione fissata che diventa
- significativa ($> \SI{100}{\nm}$) per tempi di osservazione di
- diversi minuti.
-
- Per quantificare quest'effetto viene usato un apposito campione in cui
- diverse microsfere in silice, di diametro \SI{0.5}{\um}, vengono
- immobilizzate in uno strato di nitrocellulosa depositato nella
- superficie interna del vetrino coprioggetti.
- Le varie fasi per la preparazione di questo campione sono descritte
- nei particolari nell'appendice \ref{app:protocols}, protocollo
- \ref{proto:silica_beads_flow_cell}.
-
- Le microsfere immobilizzate nel campione possono essere messe a fuoco
- e visualizzate attraverso il sistema di microscopia a luce trasmessa.
- Una volta selezionata e messa a fuoco una microsfera, analizzando
- l'immagine prodotta da uno dei due sensori CMOS è possibile calcolare
- le coordinate (in pixel) del suo centroide:
-
- \begin{equation}
- (x_{cen}, y_{cen}) =
- \frac{
- \sum_{(x, y)} (x, y) I(x, y)
- }{
- \sum_{(x, y)} I(x, y)
- }
- \end{equation}
-
- Per evitare di considerare altre microsfere o imperfezioni sul campione
- si sceglie di effettuare il calcolo del centroide limitando la regione
- dell'immagine utilizzata a un rettangolo nel quale una microsfera è
- sufficientemente isolata.
-
- Ricalcolando il centroide intervalli temporali fissati è possibile
- osservare la deriva della posizione (x, y) della microsfera.
- Inoltre è possibile sfruttare questo stesso campione per effettuare
- una calibrazione del fattore di conversione pixel/nm lungo due assi
- ortogonali.
-
- Per effettuare la calibrazione, dopo aver calcolato il centroide
- della microsfera, si sposta la posizione dal campione lungo uno dei
- due assi di una distanza ben definita, utilizzando il traslatore
- piezoelettrico. A questo punto, calcolando la nuova posizione del
- centroide si ottiene il rapporto tra lo spostamento comandato al
- traslatore (in \si{\nm}) e la variazione del centroide (in pixel).
- Ripetendo questa operazione in sequenza per vari punti si ottiene
- una curva di calibrazione per l'asse scansionata, dalla quale è
- possibile estratte la costante di proporzionalità con un \textit{fit}
- lineare.
-
- Risulta più complesso invece stimare la deriva del piano focale:
- per questo motivo è stato sviluppato un metodo per determinare a
- partire dalle immagini un valore che sia linearmente proporzionale
- alla quota del piano focale rispetto al centro della sfera.
- Il metodo sviluppato sfrutta le caratteristiche dalla distribuzione
- radiale della luce diffusa dalla microsfera.
-
- In figura \ref{fig:radial_itensity} rappresentato l'andamento del
- profilo radiale variando la quota del piano focale (z).
-
- \begin{figure}[h]
- \centering
- \includegraphics{images/radial_intensity.pdf}
- \caption{Profilo di indensità radiale rispetto al centroide
- per una microsfera, in diversi piani }
- \label{fig:radial_itensity}
- \end{figure}
- Da questi dati è stato possibile osservare che il rapporto tra
- l'intensità integrata in un anello centrato sulla microsfera e quella
- integrata nella regione interna al medesimo anello (regioni gialle
- e arancioni in figura), mostra un andamento proporzionale alla quota
- del piano focale, almeno in un certo intorno del centro della sfera.
-
- In figura \ref{fig:z_est} viene mostrato l'andamento del rapporto
- tra l'intensità media in un anello con raggio interno ed esterno
- rispettivamente di \SIlist{80;160}{pixel} e l'intensità media
- calcolata in un raggio di \SI{60}{pixel}.
-
- \begin{figure}[h]
- \centering
- \includegraphics{images/z-est.pdf}
- \caption{Andamento del rapporto intensità anello/cerchio in
- funzione della quota del piano focale.}
- \label{fig:z_est}
- \end{figure}
-
- Come si può osservare la quantità così definita può essere usata
- per determinare la quota con una discreta sensibilità in
- un intervallo di \SIrange{3}{4}{\um} intorno al centro della sfera.
- Analogamente a quanto fatto per le assi x e y è possibile eseguire
- una calibrazione spostando il campione di una quota controllata
- attraverso il traslatore piezoelettrico dell'obiettivo, e costruire
- una curva di calibrazione come quella in figura \ref{fig:z_est}.
-
- Conoscendo quindi tre fattori di calibrazione è possibile, partendo
- da un'immagine della microsfera, ottenere una stima della sua
- posizione nello spazio tridimensionale. Questo fatto ci permette
- di implementare un sistema attivo di stabilizzazione meccanica del
- microscopio. Continuando a monitorare la sfera mediante mentre si
- eseguono le misurazioni di forza è possibile rilevare gli spostamenti
- del campione e compensarli inviando appositi comandi ai traslatori
- piezoelettrici.
-
- In ambiente LabVIEW è stato sviluppato un codice di controllo
- che implementa un meccanismo di retroazione tra le letture sulla
- posizione della sfera e i traslatori piezoelettrici.
- Il codice consente all'operatore di selezionare la regione
- d'interesse intorno a una microsfera immobilizzata sul vetrino
- coprioggetti. Successivamente, quando la stabilizzazione viene
- attivata, il codice acquisice diverse immagini della microsfera e
- ne stima la posizione iniziale in termini di coordinate (x, y, z),
- usando i fattori di conversione determinati con la calibrazione.
- A questo punto viene avviato un ciclo di retroazione: continuando
- a acquisire immagini della microsfera (a una frequenza che può
- arrivare fino a \SI{100}{\Hz}), viene comandato ai traslatori
- uno spostamento proporzionale alla differenza tra la posizione della
- sfera rilevata e quella iniziale.
-
- Quando il sistema di stabilizzazione meccanica viene attivato
- è stato possibile mostrare che la posizione media del campione resta
- stabile indipendentemente dal tempo di osservazione, con fluttuazione
- che hanno una deviazione standard di circa \SI{1}{\nm}.
- Introdurre nel ciclo di controlla alla componente proporzionale
- una componente integrale o derivativa non altera significativamente
- la stabilizzazione raggiunta.
-
- L'acquisizione di diverse tracce della durata di 5-10 minuti ha
- sempre mostrato deviazioni standard delle fluttuazioni comprese
- tra \SIlist{1;2}{\nm}.
-
-
-
- \section{Calibrazione parametri trappole}
- \label{sec:calibration}
-
- Per poter eseguire misurazioni di forza su sistemi biologici è
- fondamentale riuscire a conoscere il valore della tensione applicata
- alle microsfere intrappolate nelle pinzette ottiche. Questo è
- possibile dal momento che l'azione di una pinzetta ottica su una
- microsfera può essere modellizzata come una forza di richiamo
- elastica (vedi sezione \ref{sec:ot}).
-
- Conoscendo la costante di richiamo è possibile mettere in relazione
- la posizione della sfera rispetto al centro della trappola
- (rilevabile tramite i QPD) con la risultante delle altre forze
- esterne che agiscono sulla microsfera.
-
-
-
-
- \section{Retroazione AOM e \textit{force-clamp}}
- \label{sec:force-clamp}
-
- \section{Saggio a tre sfere}
- \label{sec:three-beads}
-
- \section{Fluorescenza di singola molecole}
- \label{sec:single_molecule_fluorescence}
-
- \section{TIRF e illuminazione a modi di galleria}
- \label{sec:gallery_mode}
|