Tesi magistrale
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

172 lines
7.4 KiB

\chapter{Metodi}
\label{cap:methods}
%%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%%
\section{Stabilizzazione meccanica}
\label{sec:stabilization}
Nonostante l'isolamento meccanico fornito dagli elastomeri e dal
tavolo ottico la posizione del campione rispetto al centro
dell'obiettivo e la quota del piano focale sono soggette a
fluttuazioni e derive.
Gli effetti più evidenti e rilevabili sono rapide oscillazioni della
posizione del campione dovute a vibrazioni acustiche residue e una
progressive deriva rispetto alla posizione fissata che diventa
significativa ($> \SI{100}{\nm}$) per tempi di osservazione di
diversi minuti.
Per quantificare quest'effetto viene usato un apposito campione in cui
diverse microsfere in silice, di diametro \SI{0.5}{\um}, vengono
immobilizzate in uno strato di nitrocellulosa depositato nella
superficie interna del vetrino coprioggetti.
Le varie fasi per la preparazione di questo campione sono descritte
nei particolari nell'appendice \ref{app:protocols}, protocollo
\ref{proto:silica_beads_flow_cell}.
Le microsfere immobilizzate nel campione possono essere messe a fuoco
e visualizzate attraverso il sistema di microscopia a luce trasmessa.
Una volta selezionata e messa a fuoco una microsfera, analizzando
l'immagine prodotta da uno dei due sensori CMOS è possibile calcolare
le coordinate (in pixel) del suo centroide:
\begin{equation}
(x_{cen}, y_{cen}) =
\frac{
\sum_{(x, y)} (x, y) I(x, y)
}{
\sum_{(x, y)} I(x, y)
}
\end{equation}
Per evitare di considerare altre microsfere o imperfezioni sul campione
si sceglie di effettuare il calcolo del centroide limitando la regione
dell'immagine utilizzata a un rettangolo nel quale una microsfera è
sufficientemente isolata.
Ricalcolando il centroide intervalli temporali fissati è possibile
osservare la deriva della posizione (x, y) della microsfera.
Inoltre è possibile sfruttare questo stesso campione per effettuare
una calibrazione del fattore di conversione pixel/nm lungo due assi
ortogonali.
Per effettuare la calibrazione, dopo aver calcolato il centroide
della microsfera, si sposta la posizione dal campione lungo uno dei
due assi di una distanza ben definita, utilizzando il traslatore
piezoelettrico. A questo punto, calcolando la nuova posizione del
centroide si ottiene il rapporto tra lo spostamento comandato al
traslatore (in \si{\nm}) e la variazione del centroide (in pixel).
Ripetendo questa operazione in sequenza per vari punti si ottiene
una curva di calibrazione per l'asse scansionata, dalla quale è
possibile estratte la costante di proporzionalità con un \textit{fit}
lineare.
Risulta più complesso invece stimare la deriva del piano focale:
per questo motivo è stato sviluppato un metodo per determinare a
partire dalle immagini un valore che sia linearmente proporzionale
alla quota del piano focale rispetto al centro della sfera.
Il metodo sviluppato sfrutta le caratteristiche dalla distribuzione
radiale della luce diffusa dalla microsfera.
In figura \ref{fig:radial_itensity} rappresentato l'andamento del
profilo radiale variando la quota del piano focale (z).
\begin{figure}[h]
\centering
\includegraphics{images/radial_intensity.pdf}
\caption{Profilo di indensità radiale rispetto al centroide
per una microsfera, in diversi piani }
\label{fig:radial_itensity}
\end{figure}
Da questi dati è stato possibile osservare che il rapporto tra
l'intensità integrata in un anello centrato sulla microsfera e quella
integrata nella regione interna al medesimo anello (regioni gialle
e arancioni in figura), mostra un andamento proporzionale alla quota
del piano focale, almeno in un certo intorno del centro della sfera.
In figura \ref{fig:z_est} viene mostrato l'andamento del rapporto
tra l'intensità media in un anello con raggio interno ed esterno
rispettivamente di \SIlist{80;160}{pixel} e l'intensità media
calcolata in un raggio di \SI{60}{pixel}.
\begin{figure}[h]
\centering
\includegraphics{images/z-est.pdf}
\caption{Andamento del rapporto intensità anello/cerchio in
funzione della quota del piano focale.}
\label{fig:z_est}
\end{figure}
Come si può osservare la quantità così definita può essere usata
per determinare la quota con una discreta sensibilità in
un intervallo di \SIrange{3}{4}{\um} intorno al centro della sfera.
Analogamente a quanto fatto per le assi x e y è possibile eseguire
una calibrazione spostando il campione di una quota controllata
attraverso il traslatore piezoelettrico dell'obiettivo, e costruire
una curva di calibrazione come quella in figura \ref{fig:z_est}.
Conoscendo quindi tre fattori di calibrazione è possibile, partendo
da un'immagine della microsfera, ottenere una stima della sua
posizione nello spazio tridimensionale. Questo fatto ci permette
di implementare un sistema attivo di stabilizzazione meccanica del
microscopio. Continuando a monitorare la sfera mediante mentre si
eseguono le misurazioni di forza è possibile rilevare gli spostamenti
del campione e compensarli inviando appositi comandi ai traslatori
piezoelettrici.
In ambiente LabVIEW è stato sviluppato un codice di controllo
che implementa un meccanismo di retroazione tra le letture sulla
posizione della sfera e i traslatori piezoelettrici.
Il codice consente all'operatore di selezionare la regione
d'interesse intorno a una microsfera immobilizzata sul vetrino
coprioggetti. Successivamente, quando la stabilizzazione viene
attivata, il codice acquisice diverse immagini della microsfera e
ne stima la posizione iniziale in termini di coordinate (x, y, z),
usando i fattori di conversione determinati con la calibrazione.
A questo punto viene avviato un ciclo di retroazione: continuando
a acquisire immagini della microsfera (a una frequenza che può
arrivare fino a \SI{100}{\Hz}), viene comandato ai traslatori
uno spostamento proporzionale alla differenza tra la posizione della
sfera rilevata e quella iniziale.
Quando il sistema di stabilizzazione meccanica viene attivato
è stato possibile mostrare che la posizione media del campione resta
stabile indipendentemente dal tempo di osservazione, con fluttuazione
che hanno una deviazione standard di circa \SI{1}{\nm}.
Introdurre nel ciclo di controlla alla componente proporzionale
una componente integrale o derivativa non altera significativamente
la stabilizzazione raggiunta.
L'acquisizione di diverse tracce della durata di 5-10 minuti ha
sempre mostrato deviazioni standard delle fluttuazioni comprese
tra \SIlist{1;2}{\nm}.
\section{Calibrazione parametri trappole}
\label{sec:calibration}
Per poter eseguire misurazioni di forza su sistemi biologici è
fondamentale riuscire a conoscere il valore della tensione applicata
alle microsfere intrappolate nelle pinzette ottiche. Questo è
possibile dal momento che l'azione di una pinzetta ottica su una
microsfera può essere modellizzata come una forza di richiamo
elastica (vedi sezione \ref{sec:ot}).
Conoscendo la costante di richiamo è possibile mettere in relazione
la posizione della sfera rispetto al centro della trappola
(rilevabile tramite i QPD) con la risultante delle altre forze
esterne che agiscono sulla microsfera.
\section{Retroazione AOM e \textit{force-clamp}}
\label{sec:force-clamp}
\section{Saggio a tre sfere}
\label{sec:three-beads}
\section{Fluorescenza di singola molecole}
\label{sec:single_molecule_fluorescence}
\section{TIRF e illuminazione a modi di galleria}
\label{sec:gallery_mode}