|
\chapter{Metodi}
|
|
\label{cap:methods}
|
|
%%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%%
|
|
\section{Stabilizzazione meccanica}
|
|
\label{sec:stabilization}
|
|
|
|
Nonostante l'isolamento meccanico fornito dagli elastomeri e dal
|
|
tavolo ottico la posizione del campione rispetto al centro
|
|
dell'obiettivo e la quota del piano focale sono soggette a
|
|
fluttuazioni e derive.
|
|
Gli effetti più evidenti e rilevabili sono rapide oscillazioni della
|
|
posizione del campione dovute a vibrazioni acustiche residue e una
|
|
progressive deriva rispetto alla posizione fissata che diventa
|
|
significativa ($> \SI{100}{\nm}$) per tempi di osservazione di
|
|
diversi minuti.
|
|
|
|
Per quantificare quest'effetto viene usato un apposito campione in cui
|
|
diverse microsfere in silice, di diametro \SI{0.5}{\um}, vengono
|
|
immobilizzate in uno strato di nitrocellulosa depositato nella
|
|
superficie interna del vetrino coprioggetti.
|
|
Le varie fasi per la preparazione di questo campione sono descritte
|
|
nei particolari nell'appendice \ref{app:protocols}, protocollo
|
|
\ref{proto:silica_beads_flow_cell}.
|
|
|
|
Le microsfere immobilizzate nel campione possono essere messe a fuoco
|
|
e visualizzate attraverso il sistema di microscopia a luce trasmessa.
|
|
Una volta selezionata e messa a fuoco una microsfera, analizzando
|
|
l'immagine prodotta da uno dei due sensori CMOS è possibile calcolare
|
|
le coordinate (in pixel) del suo centroide:
|
|
|
|
\begin{equation}
|
|
(x_{cen}, y_{cen}) =
|
|
\frac{
|
|
\sum_{(x, y)} (x, y) I(x, y)
|
|
}{
|
|
\sum_{(x, y)} I(x, y)
|
|
}
|
|
\end{equation}
|
|
|
|
Per evitare di considerare altre microsfere o imperfezioni sul campione
|
|
si sceglie di effettuare il calcolo del centroide limitando la regione
|
|
dell'immagine utilizzata a un rettangolo nel quale una microsfera è
|
|
sufficientemente isolata.
|
|
|
|
Ricalcolando il centroide intervalli temporali fissati è possibile
|
|
osservare la deriva della posizione (x, y) della microsfera.
|
|
Inoltre è possibile sfruttare questo stesso campione per effettuare
|
|
una calibrazione del fattore di conversione pixel/nm lungo due assi
|
|
ortogonali.
|
|
|
|
Per effettuare la calibrazione, dopo aver calcolato il centroide
|
|
della microsfera, si sposta la posizione dal campione lungo uno dei
|
|
due assi di una distanza ben definita, utilizzando il traslatore
|
|
piezoelettrico. A questo punto, calcolando la nuova posizione del
|
|
centroide si ottiene il rapporto tra lo spostamento comandato al
|
|
traslatore (in \si{\nm}) e la variazione del centroide (in pixel).
|
|
Ripetendo questa operazione in sequenza per vari punti si ottiene
|
|
una curva di calibrazione per l'asse scansionata, dalla quale è
|
|
possibile estratte la costante di proporzionalità con un \textit{fit}
|
|
lineare.
|
|
|
|
Risulta più complesso invece stimare la deriva del piano focale:
|
|
per questo motivo è stato sviluppato un metodo per determinare a
|
|
partire dalle immagini un valore che sia linearmente proporzionale
|
|
alla quota del piano focale rispetto al centro della sfera.
|
|
Il metodo sviluppato sfrutta le caratteristiche dalla distribuzione
|
|
radiale della luce diffusa dalla microsfera.
|
|
|
|
In figura \ref{fig:radial_itensity} rappresentato l'andamento del
|
|
profilo radiale variando la quota del piano focale (z).
|
|
|
|
\begin{figure}[h]
|
|
\centering
|
|
\includegraphics{images/radial_intensity.pdf}
|
|
\caption{Profilo di indensità radiale rispetto al centroide
|
|
per una microsfera, in diversi piani }
|
|
\label{fig:radial_itensity}
|
|
\end{figure}
|
|
Da questi dati è stato possibile osservare che il rapporto tra
|
|
l'intensità integrata in un anello centrato sulla microsfera e quella
|
|
integrata nella regione interna al medesimo anello (regioni gialle
|
|
e arancioni in figura), mostra un andamento proporzionale alla quota
|
|
del piano focale, almeno in un certo intorno del centro della sfera.
|
|
|
|
In figura \ref{fig:z_est} viene mostrato l'andamento del rapporto
|
|
tra l'intensità media in un anello con raggio interno ed esterno
|
|
rispettivamente di \SIlist{80;160}{pixel} e l'intensità media
|
|
calcolata in un raggio di \SI{60}{pixel}.
|
|
|
|
\begin{figure}[h]
|
|
\centering
|
|
\includegraphics{images/z-est.pdf}
|
|
\caption{Andamento del rapporto intensità anello/cerchio in
|
|
funzione della quota del piano focale.}
|
|
\label{fig:z_est}
|
|
\end{figure}
|
|
|
|
Come si può osservare la quantità così definita può essere usata
|
|
per determinare la quota con una discreta sensibilità in
|
|
un intervallo di \SIrange{3}{4}{\um} intorno al centro della sfera.
|
|
Analogamente a quanto fatto per le assi x e y è possibile eseguire
|
|
una calibrazione spostando il campione di una quota controllata
|
|
attraverso il traslatore piezoelettrico dell'obiettivo, e costruire
|
|
una curva di calibrazione come quella in figura \ref{fig:z_est}.
|
|
|
|
Conoscendo quindi tre fattori di calibrazione è possibile, partendo
|
|
da un'immagine della microsfera, ottenere una stima della sua
|
|
posizione nello spazio tridimensionale. Questo fatto ci permette
|
|
di implementare un sistema attivo di stabilizzazione meccanica del
|
|
microscopio. Continuando a monitorare la sfera mediante mentre si
|
|
eseguono le misurazioni di forza è possibile rilevare gli spostamenti
|
|
del campione e compensarli inviando appositi comandi ai traslatori
|
|
piezoelettrici.
|
|
|
|
In ambiente LabVIEW è stato sviluppato un codice di controllo
|
|
che implementa un meccanismo di retroazione tra le letture sulla
|
|
posizione della sfera e i traslatori piezoelettrici.
|
|
Il codice consente all'operatore di selezionare la regione
|
|
d'interesse intorno a una microsfera immobilizzata sul vetrino
|
|
coprioggetti. Successivamente, quando la stabilizzazione viene
|
|
attivata, il codice acquisice diverse immagini della microsfera e
|
|
ne stima la posizione iniziale in termini di coordinate (x, y, z),
|
|
usando i fattori di conversione determinati con la calibrazione.
|
|
A questo punto viene avviato un ciclo di retroazione: continuando
|
|
a acquisire immagini della microsfera (a una frequenza che può
|
|
arrivare fino a \SI{100}{\Hz}), viene comandato ai traslatori
|
|
uno spostamento proporzionale alla differenza tra la posizione della
|
|
sfera rilevata e quella iniziale.
|
|
|
|
Quando il sistema di stabilizzazione meccanica viene attivato
|
|
è stato possibile mostrare che la posizione media del campione resta
|
|
stabile indipendentemente dal tempo di osservazione, con fluttuazione
|
|
che hanno una deviazione standard di circa \SI{1}{\nm}.
|
|
Introdurre nel ciclo di controlla alla componente proporzionale
|
|
una componente integrale o derivativa non altera significativamente
|
|
la stabilizzazione raggiunta.
|
|
|
|
L'acquisizione di diverse tracce della durata di 5-10 minuti ha
|
|
sempre mostrato deviazioni standard delle fluttuazioni comprese
|
|
tra \SIlist{1;2}{\nm}.
|
|
|
|
|
|
|
|
\section{Calibrazione parametri trappole}
|
|
\label{sec:calibration}
|
|
|
|
Per poter eseguire misurazioni di forza su sistemi biologici è
|
|
fondamentale riuscire a conoscere il valore della tensione applicata
|
|
alle microsfere intrappolate nelle pinzette ottiche. Questo è
|
|
possibile dal momento che l'azione di una pinzetta ottica su una
|
|
microsfera può essere modellizzata come una forza di richiamo
|
|
elastica (vedi sezione \ref{sec:ot}).
|
|
|
|
Conoscendo la costante di richiamo è possibile mettere in relazione
|
|
la posizione della sfera rispetto al centro della trappola
|
|
(rilevabile tramite i QPD) con la risultante delle altre forze
|
|
esterne che agiscono sulla microsfera.
|
|
|
|
|
|
|
|
|
|
\section{Retroazione AOM e \textit{force-clamp}}
|
|
\label{sec:force-clamp}
|
|
|
|
\section{Saggio a tre sfere}
|
|
\label{sec:three-beads}
|
|
|
|
\section{Fluorescenza di singola molecole}
|
|
\label{sec:single_molecule_fluorescence}
|
|
|
|
\section{TIRF e illuminazione a modi di galleria}
|
|
\label{sec:gallery_mode}
|