jim a102f6189b | 9 years ago | |
---|---|---|
functional_tests | 9 years ago | |
nd2reader | 9 years ago | |
tests | 9 years ago | |
.dockerignore | 9 years ago | |
.gitignore | 10 years ago | |
CHANGELOG.md | 9 years ago | |
CONTRIBUTORS.txt | 10 years ago | |
Dockerfile | 9 years ago | |
LICENSE.txt | 10 years ago | |
Makefile | 9 years ago | |
README.md | 9 years ago | |
ftests.py | 9 years ago | |
requirements.txt | 10 years ago | |
setup.cfg | 10 years ago | |
setup.py | 9 years ago | |
tests.py | 10 years ago |
nd2reader
is a pure-Python package that reads images produced by NIS Elements 4.0+. It has only been definitively tested on NIS Elements 4.30.02 Build 1053. Support for older versions is planned.
.nd2 files contain images and metadata, which can be split along multiple dimensions: time, fields of view (xy-plane), focus (z-plane), and filter channel.
nd2reader
loads images as Numpy arrays, which makes it trivial to use with the image analysis packages such as scikit-image
and OpenCV
.
pip3 install nd2reader
for Python 3.x
pip install nd2reader
for Python 2.x
If you don't already have the packages numpy
and six
, they will be installed automatically.
A quick summary of ND2 metadata can be obtained as shown below.
>>> import nd2reader
>>> nd2 = nd2reader.Nd2("/path/to/my_images.nd2")
>>> nd2
<ND2 /path/to/my_images.nd2>
Created: 2014-11-11 15:59:19
Image size: 1280x800 (HxW)
Image cycles: 636
Channels: '', 'GFP'
Fields of View: 8
Z-Levels: 3
You can also get some metadata about the nd2 programatically:
>>> nd2.height
1280
>>> nd2.width
800
>>> len(nd2)
30528
Nd2
is also a context manager, if you care about that sort of thing:
>>> import nd2reader
>>> with nd2reader.Nd2("/path/to/my_images.nd2") as nd2:
... for image in nd2:
... do_something(image)
Image
objects are just Numpy arrays with some extra metadata bolted on:
>>> image = nd2[20]
>>> print(image)
array([[1894, 1949, 1941, ..., 2104, 2135, 2114],
[1825, 1846, 1848, ..., 1994, 2149, 2064],
[1909, 1820, 1821, ..., 1995, 1952, 2062],
...,
[3487, 3512, 3594, ..., 3603, 3643, 3492],
[3642, 3475, 3525, ..., 3712, 3682, 3609],
[3687, 3777, 3738, ..., 3784, 3870, 4008]], dtype=uint16)
>>> print(image.timestamp)
10.1241241248
>>> print(image.frame_number)
11
>>> print(image.field_of_view)
6
>>> print(image.channel)
'GFP'
>>> print(image.z_level)
0
Often, you may want to just iterate over each image in the order they were acquired:
import nd2reader
nd2 = nd2reader.Nd2("/path/to/my_images.nd2")
for image in nd2:
do_something(image)
Slicing is also supported and is extremely memory efficient, as images are only read when directly accessed:
my_subset = nd2[50:433]
for image in my_subset:
do_something(image)
Step sizes are also accepted:
for image in nd2[:100:2]:
# gets every other image in the first 100 images
do_something(image)
for image in nd2[::-1]:
# iterate backwards over every image, if you're into that kind of thing
do_something(image)
nd2reader is about 14 times faster under Python 3.4 compared to Python 2.7. If you know why, please get in touch!
If this fails to work exactly as expected, please open a Github issue. If you get an unhandled exception, please paste the entire stack trace into the issue as well.
Please feel free to submit a pull request with any new features you think would be useful. You can also create an issue if you'd just like to propose or discuss a potential idea.
Support for the development of this package was provided by the Finkelstein Laboratory.