You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

283 lines
9.9 KiB

import array
import numpy as np
import struct
import re
from StringIO import StringIO
from datetime import datetime
class Nd2FileReader(object):
"""
Reads .nd2 files, provides an interface to the metadata, and generates numpy arrays from the image data.
"""
def __init__(self, filename):
self._absolute_start = None
self._filename = filename
self._file_handler = None
self._chunk_map_start_location = None
self._label_map = {}
self._metadata = {}
self._read_map()
self._parse_dict_data()
self.__dimensions = None
@property
def _dimensions(self):
if self.__dimensions is None:
# The particular slot that this data shows up in changes (seemingly) randomly
for line in self._metadata['ImageTextInfo']['SLxImageTextInfo'].values():
if "Dimensions:" in line:
metadata = line
break
else:
raise Exception("Could not parse metadata dimensions!")
for line in metadata.split("\r\n"):
if line.startswith("Dimensions:"):
self.__dimensions = line
break
return self.__dimensions
@property
def absolute_start(self):
if self._absolute_start is None:
for line in self._metadata['ImageTextInfo']['SLxImageTextInfo'].values():
absolute_start_12 = None
absolute_start_24 = None
# ND2s seem to randomly switch between 12- and 24-hour representations.
try:
absolute_start_24 = datetime.strptime(line, "%m/%d/%Y %H:%M:%S")
except ValueError:
pass
try:
absolute_start_12 = datetime.strptime(line, "%m/%d/%Y %I:%M:%S %p")
except ValueError:
pass
if not absolute_start_12 and not absolute_start_24:
continue
self._absolute_start = absolute_start_12 if absolute_start_12 else absolute_start_24
return self._absolute_start
@property
def fh(self):
if self._file_handler is None:
self._file_handler = open(self._filename, "rb")
return self._file_handler
@property
def time_index_count(self):
"""
The number of images for a given field of view, channel, and z_level combination.
Effectively the number of frames.
:rtype: int
"""
pattern = r""".*?T'\((\d+)\).*?"""
try:
count = int(re.match(pattern, self._dimensions).group(1))
except AttributeError:
return 1
else:
return count
@property
def z_level_count(self):
pattern = r""".*?Z\((\d+)\).*?"""
try:
count = int(re.match(pattern, self._dimensions).group(1))
except AttributeError:
return 1
else:
return count
@property
def field_of_view_count(self):
"""
The metadata contains information about fields of view, but it contains it even if some fields
of view were cropped. We can't find anything that states which fields of view are actually
in the image data, so we have to calculate it. There probably is something somewhere, since
NIS Elements can figure it out, but we haven't found it yet.
"""
pattern = r""".*?XY\((\d+)\).*?"""
try:
count = int(re.match(pattern, self._dimensions).group(1))
except AttributeError:
return 1
else:
return count
@property
def channel_count(self):
pattern = r""".*?λ\((\d+)\).*?"""
try:
count = int(re.match(pattern, self._dimensions).group(1))
except AttributeError:
return 1
else:
return count
def get_raw_image_data(self, image_set_number, channel_offset):
chunk = self._label_map["ImageDataSeq|%d!" % image_set_number]
data = self._read_chunk(chunk.location)
timestamp = struct.unpack("d", data[:8])[0]
# The images for the various channels are interleaved within each other. Yes, this is an incredibly unintuitive and nonsensical way
# to store data.
image_data = array.array("H", data)
image_data_start = 4 + channel_offset
return timestamp, image_data[image_data_start::self.channel_count]
def _parse_dict_data(self):
# TODO: Don't like this name
for label in self._top_level_dict_labels:
chunk_location = self._label_map[label].location
data = self._read_chunk(chunk_location)
stop = label.index("LV")
self._metadata[label[:stop]] = self.read_lv_encoding(data, 1)
@property
def metadata(self):
return self._metadata
@property
def _top_level_dict_labels(self):
# TODO: I don't like this name either
for label in self._label_map.keys():
if label.endswith("LV!") or "LV|" in label:
yield label
def _read_map(self):
"""
Every label ends with an exclamation point, however, we can't directly search for those to find all the labels
as some of the bytes contain the value 33, which is the ASCII code for "!". So we iteratively find each label,
grab the subsequent data (always 16 bytes long), advance to the next label and repeat.
"""
self.fh.seek(-8, 2)
chunk_map_start_location = struct.unpack("Q", self.fh.read(8))[0]
self.fh.seek(chunk_map_start_location)
raw_text = self.fh.read(-1)
label_start = raw_text.index("ND2 FILEMAP SIGNATURE NAME 0001!") + 32
while True:
data_start = raw_text.index("!", label_start) + 1
key = raw_text[label_start: data_start]
location, length = struct.unpack("QQ", raw_text[data_start: data_start + 16])
label, value = key, chunk(location=location, length=length)
if label == "ND2 CHUNK MAP SIGNATURE 0000001!":
# We've reached the end of the chunk map
break
self._label_map[label] = value
label_start = data_start + 16
def _read_chunk(self, chunk_location):
"""
Gets the data for a given chunk pointer
"""
self.fh.seek(chunk_location)
chunk_data = self._read_chunk_metadata()
header, relative_offset, data_length = self._parse_chunk_metadata(chunk_data)
return self._read_chunk_data(chunk_location, relative_offset, data_length)
def _read_chunk_metadata(self):
"""
Gets the chunks metadata, which is always 16 bytes
"""
return self.fh.read(16)
def _read_chunk_data(self, chunk_location, relative_offset, data_length):
"""
Reads the actual data for a given chunk
"""
# We start at the location of the chunk metadata, skip over the metadata, and then proceed to the
# start of the actual data field, which is at some arbitrary place after the metadata.
self.fh.seek(chunk_location + 16 + relative_offset)
return self.fh.read(data_length)
@staticmethod
def _parse_chunk_metadata(chunk_data):
"""
Finds out everything about a given chunk. Every chunk begins with the same value, so if that's ever
different we can assume the file has suffered some kind of damage.
"""
header, relative_offset, data_length = struct.unpack("IIQ", chunk_data)
if header != 0xabeceda:
raise ValueError("The ND2 file seems to be corrupted.")
return header, relative_offset, data_length
def _get_raw_chunk_map_text(self):
"""
Reads the entire chunk map and returns it as a string.
"""
@staticmethod
def as_numpy_array(arr):
return np.frombuffer(arr)
def _z_level_count(self):
name = "CustomData|Z!"
st = self._read_chunk(self._label_map[name].location)
res = array.array("d", st)
return len(res)
def read_lv_encoding(self, data, count):
data = StringIO(data)
res = {}
total_count = 0
for c in range(count):
lastpos = data.tell()
total_count += 1
hdr = data.read(2)
if not hdr:
break
typ = ord(hdr[0])
bname = data.read(2*ord(hdr[1]))
name = bname.decode("utf16")[:-1].encode("utf8")
if typ == 1:
value, = struct.unpack("B", data.read(1))
elif typ in [2, 3]:
value, = struct.unpack("I", data.read(4))
elif typ == 5:
value, = struct.unpack("Q", data.read(8))
elif typ == 6:
value, = struct.unpack("d", data.read(8))
elif typ == 8:
value = data.read(2)
while value[-2:] != "\x00\x00":
value += data.read(2)
value = value.decode("utf16")[:-1].encode("utf8")
elif typ == 9:
cnt, = struct.unpack("Q", data.read(8))
value = array.array("B", data.read(cnt))
elif typ == 11:
newcount, length = struct.unpack("<IQ", data.read(12))
length -= data.tell()-lastpos
nextdata = data.read(length)
value = self.read_lv_encoding(nextdata, newcount)
# Skip some offsets
data.read(newcount * 8)
else:
assert 0, "%s hdr %x:%x unknown" % (name, ord(hdr[0]), ord(hdr[1]))
if not name in res:
res[name] = value
else:
if not isinstance(res[name], list):
res[name] = [res[name]]
res[name].append(value)
x = data.read()
assert not x, "skip %d %s" % (len(x), repr(x[:30]))
return res