|
|
- import array
- import numpy as np
- import struct
- import re
- from StringIO import StringIO
- from datetime import datetime
-
-
- class Nd2FileReader(object):
- """
- Reads .nd2 files, provides an interface to the metadata, and generates numpy arrays from the image data.
-
- """
- def __init__(self, filename):
- self._absolute_start = None
- self._filename = filename
- self._file_handler = None
- self._chunk_map_start_location = None
- self._label_map = {}
- self._metadata = {}
- self._read_map()
- self._parse_dict_data()
- self.__dimensions = None
-
- @property
- def _dimensions(self):
- if self.__dimensions is None:
- # The particular slot that this data shows up in changes (seemingly) randomly
- for line in self._metadata['ImageTextInfo']['SLxImageTextInfo'].values():
- if "Dimensions:" in line:
- metadata = line
- break
- else:
- raise Exception("Could not parse metadata dimensions!")
- for line in metadata.split("\r\n"):
- if line.startswith("Dimensions:"):
- self.__dimensions = line
- break
- return self.__dimensions
-
- @property
- def absolute_start(self):
- if self._absolute_start is None:
- for line in self._metadata['ImageTextInfo']['SLxImageTextInfo'].values():
- absolute_start_12 = None
- absolute_start_24 = None
-
- # ND2s seem to randomly switch between 12- and 24-hour representations.
- try:
- absolute_start_24 = datetime.strptime(line, "%m/%d/%Y %H:%M:%S")
- except ValueError:
- pass
-
- try:
- absolute_start_12 = datetime.strptime(line, "%m/%d/%Y %I:%M:%S %p")
- except ValueError:
- pass
-
- if not absolute_start_12 and not absolute_start_24:
- continue
-
- self._absolute_start = absolute_start_12 if absolute_start_12 else absolute_start_24
-
- return self._absolute_start
-
- @property
- def fh(self):
- if self._file_handler is None:
- self._file_handler = open(self._filename, "rb")
- return self._file_handler
-
- @property
- def time_index_count(self):
- """
- The number of images for a given field of view, channel, and z_level combination.
- Effectively the number of frames.
-
- :rtype: int
-
- """
- pattern = r""".*?T'\((\d+)\).*?"""
- try:
- count = int(re.match(pattern, self._dimensions).group(1))
- except AttributeError:
- return 1
- else:
- return count
-
- @property
- def z_level_count(self):
- pattern = r""".*?Z\((\d+)\).*?"""
- try:
- count = int(re.match(pattern, self._dimensions).group(1))
- except AttributeError:
- return 1
- else:
- return count
-
- @property
- def field_of_view_count(self):
- """
- The metadata contains information about fields of view, but it contains it even if some fields
- of view were cropped. We can't find anything that states which fields of view are actually
- in the image data, so we have to calculate it. There probably is something somewhere, since
- NIS Elements can figure it out, but we haven't found it yet.
-
- """
- pattern = r""".*?XY\((\d+)\).*?"""
- try:
- count = int(re.match(pattern, self._dimensions).group(1))
- except AttributeError:
- return 1
- else:
- return count
-
- @property
- def channel_count(self):
- pattern = r""".*?λ\((\d+)\).*?"""
- try:
- count = int(re.match(pattern, self._dimensions).group(1))
- except AttributeError:
- return 1
- else:
- return count
-
- def get_raw_image_data(self, image_set_number, channel_offset):
- chunk = self._label_map["ImageDataSeq|%d!" % image_set_number]
- data = self._read_chunk(chunk.location)
- timestamp = struct.unpack("d", data[:8])[0]
- # The images for the various channels are interleaved within each other. Yes, this is an incredibly unintuitive and nonsensical way
- # to store data.
- image_data = array.array("H", data)
- image_data_start = 4 + channel_offset
- return timestamp, image_data[image_data_start::self.channel_count]
-
- def _parse_dict_data(self):
- # TODO: Don't like this name
- for label in self._top_level_dict_labels:
- chunk_location = self._label_map[label].location
- data = self._read_chunk(chunk_location)
- stop = label.index("LV")
- self._metadata[label[:stop]] = self.read_lv_encoding(data, 1)
-
- @property
- def metadata(self):
- return self._metadata
-
- @property
- def _top_level_dict_labels(self):
- # TODO: I don't like this name either
- for label in self._label_map.keys():
- if label.endswith("LV!") or "LV|" in label:
- yield label
-
- def _read_map(self):
- """
- Every label ends with an exclamation point, however, we can't directly search for those to find all the labels
- as some of the bytes contain the value 33, which is the ASCII code for "!". So we iteratively find each label,
- grab the subsequent data (always 16 bytes long), advance to the next label and repeat.
-
- """
- self.fh.seek(-8, 2)
- chunk_map_start_location = struct.unpack("Q", self.fh.read(8))[0]
- self.fh.seek(chunk_map_start_location)
- raw_text = self.fh.read(-1)
- label_start = raw_text.index("ND2 FILEMAP SIGNATURE NAME 0001!") + 32
-
- while True:
- data_start = raw_text.index("!", label_start) + 1
- key = raw_text[label_start: data_start]
- location, length = struct.unpack("QQ", raw_text[data_start: data_start + 16])
- label, value = key, chunk(location=location, length=length)
-
- if label == "ND2 CHUNK MAP SIGNATURE 0000001!":
- # We've reached the end of the chunk map
- break
-
- self._label_map[label] = value
- label_start = data_start + 16
-
- def _read_chunk(self, chunk_location):
- """
- Gets the data for a given chunk pointer
-
- """
- self.fh.seek(chunk_location)
- chunk_data = self._read_chunk_metadata()
- header, relative_offset, data_length = self._parse_chunk_metadata(chunk_data)
- return self._read_chunk_data(chunk_location, relative_offset, data_length)
-
- def _read_chunk_metadata(self):
- """
- Gets the chunks metadata, which is always 16 bytes
-
- """
- return self.fh.read(16)
-
- def _read_chunk_data(self, chunk_location, relative_offset, data_length):
- """
- Reads the actual data for a given chunk
-
- """
- # We start at the location of the chunk metadata, skip over the metadata, and then proceed to the
- # start of the actual data field, which is at some arbitrary place after the metadata.
- self.fh.seek(chunk_location + 16 + relative_offset)
- return self.fh.read(data_length)
-
- @staticmethod
- def _parse_chunk_metadata(chunk_data):
- """
- Finds out everything about a given chunk. Every chunk begins with the same value, so if that's ever
- different we can assume the file has suffered some kind of damage.
-
- """
- header, relative_offset, data_length = struct.unpack("IIQ", chunk_data)
- if header != 0xabeceda:
- raise ValueError("The ND2 file seems to be corrupted.")
- return header, relative_offset, data_length
-
- def _get_raw_chunk_map_text(self):
- """
- Reads the entire chunk map and returns it as a string.
-
- """
-
-
- @staticmethod
- def as_numpy_array(arr):
- return np.frombuffer(arr)
-
- def _z_level_count(self):
- name = "CustomData|Z!"
- st = self._read_chunk(self._label_map[name].location)
- res = array.array("d", st)
- return len(res)
-
- def read_lv_encoding(self, data, count):
- data = StringIO(data)
- res = {}
- total_count = 0
- for c in range(count):
- lastpos = data.tell()
- total_count += 1
- hdr = data.read(2)
- if not hdr:
- break
- typ = ord(hdr[0])
- bname = data.read(2*ord(hdr[1]))
- name = bname.decode("utf16")[:-1].encode("utf8")
- if typ == 1:
- value, = struct.unpack("B", data.read(1))
- elif typ in [2, 3]:
- value, = struct.unpack("I", data.read(4))
- elif typ == 5:
- value, = struct.unpack("Q", data.read(8))
- elif typ == 6:
- value, = struct.unpack("d", data.read(8))
- elif typ == 8:
- value = data.read(2)
- while value[-2:] != "\x00\x00":
- value += data.read(2)
- value = value.decode("utf16")[:-1].encode("utf8")
- elif typ == 9:
- cnt, = struct.unpack("Q", data.read(8))
- value = array.array("B", data.read(cnt))
- elif typ == 11:
- newcount, length = struct.unpack("<IQ", data.read(12))
- length -= data.tell()-lastpos
- nextdata = data.read(length)
- value = self.read_lv_encoding(nextdata, newcount)
- # Skip some offsets
- data.read(newcount * 8)
- else:
- assert 0, "%s hdr %x:%x unknown" % (name, ord(hdr[0]), ord(hdr[1]))
- if not name in res:
- res[name] = value
- else:
- if not isinstance(res[name], list):
- res[name] = [res[name]]
- res[name].append(value)
- x = data.read()
- assert not x, "skip %d %s" % (len(x), repr(x[:30]))
- return res
|