You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
Jim Rybarski 04873ea9a5 Merge branch 'master' into 2.0 9 years ago
functional_tests resolves #123: the label map and raw metadata are now accessible, so we can more easily compare what they contain to the information in the XML (which we're still not parsing) 9 years ago
nd2reader resolves #123: the label map and raw metadata are now accessible, so we can more easily compare what they contain to the information in the XML (which we're still not parsing) 9 years ago
tests resolves #119: removed some commented-out code and an unused import 9 years ago
.dockerignore added build files to dockerignore 9 years ago
.gitignore refactored a bit 10 years ago
CHANGELOG.md Incremented version to 1.1.4 9 years ago
CONTRIBUTORS.txt realized unit testing isn't even worth it here. yeah, I said that. quote me on it. 10 years ago
Dockerfile fixed minor testing issues 9 years ago
LICENSE.txt license and attribution 10 years ago
Makefile Made publishing to PyPI easier and made minor README edit 9 years ago
README.md more consistent documentation 9 years ago
ftests.py resolves #103: ND2s with a single image could not be parsed properly as they do not contain any dimension data, so when absent we can assume a single frame exists 9 years ago
requirements.txt #56 fix six version 10 years ago
setup.cfg resolves #26 10 years ago
setup.py Incremented version to 1.1.4 9 years ago
tests.py #42 refactored and tidied up a bit, created test files 10 years ago

README.md

nd2reader

About

nd2reader is a pure-Python package that reads images produced by NIS Elements 4.0+. It has only been definitively tested on NIS Elements 4.30.02 Build 1053. Support for older versions is being actively worked on.

.nd2 files contain images and metadata, which can be split along multiple dimensions: time, fields of view (xy-plane), focus (z-plane), and filter channel.

nd2reader loads images as Numpy arrays, which makes it trivial to use with the image analysis packages such as scikit-image and OpenCV.

Installation

If you don't already have the packages numpy and six, they will be installed automatically:

pip3 install nd2reader for Python 3.x

pip install nd2reader for Python 2.x

nd2reader is an order of magnitude faster in Python 3. I recommend using it unless you have no other choice.

ND2s

A quick summary of ND2 metadata can be obtained as shown below.

>>> import nd2reader
>>> nd2 = nd2reader.Nd2("/path/to/my_images.nd2")
>>> nd2
<ND2 /path/to/my_images.nd2>
Created: 2014-11-11 15:59:19
Image size: 1280x800 (HxW)
Image cycles: 636
Channels: 'brightfield', 'GFP'
Fields of View: 8
Z-Levels: 3

You can iterate over each image in the order they were acquired:

import nd2reader
nd2 = nd2reader.Nd2("/path/to/my_images.nd2")
for image in nd2:
    do_something(image)

Image objects are just Numpy arrays with some extra metadata bolted on:

>>> image = nd2[20]
>>> image
array([[1894, 1949, 1941, ..., 2104, 2135, 2114],
       [1825, 1846, 1848, ..., 1994, 2149, 2064],
       [1909, 1820, 1821, ..., 1995, 1952, 2062],
       ...,
       [3487, 3512, 3594, ..., 3603, 3643, 3492],
       [3642, 3475, 3525, ..., 3712, 3682, 3609],
       [3687, 3777, 3738, ..., 3784, 3870, 4008]], dtype=uint16)

>>> image.timestamp
10.1241241248
>>> image.frame_number
11
>>> image.field_of_view
6
>>> image.channel
'GFP'
>>> image.z_level
0

Slicing is also supported and is extremely memory efficient, as images are only read when directly accessed:

for image in nd2[50:433]:
    do_something(image)

# get every other image in the first 100 images
for image in nd2[:100:2]:
    do_something(image)

# iterate backwards over every image
for image in nd2[::-1]:
    do_something(image)

You can also just index a single image:

# gets the 18th image
my_important_image = nd2[17] 

The Nd2 object has some programmatically-accessible metadata:

>>> nd2.height
1280
>>> nd2.width
800
>>> len(nd2)
30528

Bug Reports and Features

If this fails to work exactly as expected, please open a Github issue. If you get an unhandled exception, please paste the entire stack trace into the issue as well.

Contributing

Please feel free to submit a pull request with any new features you think would be useful. You can also create an issue if you'd just like to propose or discuss a potential idea.

Acknowledgments

Support for the development of this package was provided by the Finkelstein Laboratory.