|
|
- # -*- coding: utf-8 -*-
-
- import array
- from collections import namedtuple
- from datetime import datetime
- import numpy as np
- import re
- import struct
- from StringIO import StringIO
-
- field_of_view = namedtuple('FOV', ['number', 'x', 'y', 'z', 'pfs_offset'])
-
-
- class Nd2Parser(object):
- """
- Reads .nd2 files, provides an interface to the metadata, and generates numpy arrays from the image data.
- You should not ever need to instantiate this class manually unless you're a developer.
-
- """
- CHUNK_HEADER = 0xabeceda
- CHUNK_MAP_START = "ND2 FILEMAP SIGNATURE NAME 0001!"
- CHUNK_MAP_END = "ND2 CHUNK MAP SIGNATURE 0000001!"
-
- def __init__(self, filename):
- self._filename = filename
- self._fh = None
- self._chunk_map_start_location = None
- self._cursor_position = 0
- self._dimension_text = None
- self._label_map = {}
- self.metadata = {}
- self._read_map()
- self._parse_metadata()
-
- @property
- def _file_handle(self):
- if self._fh is None:
- self._fh = open(self._filename, "rb")
- return self._fh
-
- def _get_raw_image_data(self, image_group_number, channel_offset):
- """
- Reads the raw bytes and the timestamp of an image.
-
- :param image_group_number: groups are made of images with the same time index, field of view and z-level.
- :type image_group_number: int
- :param channel_offset: the offset in the array where the bytes for this image are found.
- :type channel_offset: int
-
- :return: (int, array.array()) or None
-
- """
- chunk = self._label_map["ImageDataSeq|%d!" % image_group_number]
- data = self._read_chunk(chunk)
- # All images in the same image group share the same timestamp! So if you have complicated image data,
- # your timestamps may not be entirely accurate. Practically speaking though, they'll only be off by a few
- # seconds unless you're doing something super weird.
- timestamp = struct.unpack("d", data[:8])[0]
- image_group_data = array.array("H", data)
- image_data_start = 4 + channel_offset
- # The images for the various channels are interleaved within the same array. For example, the second image
- # of a four image group will be composed of bytes 2, 6, 10, etc. If you understand why someone would design
- # a data structure that way, please send the author of this library a message.
- image_data = image_group_data[image_data_start::self._channel_count]
- # Skip images that are all zeros! This is important, since NIS Elements creates blank "gap" images if you
- # don't have the same number of images each cycle. We discovered this because we only took GFP images every
- # other cycle to reduce phototoxicity, but NIS Elements still allocated memory as if we were going to take
- # them every cycle.
- if np.any(image_data):
- return timestamp, image_data
- return None
-
- @property
- def _dimensions(self):
- """
- While there are metadata values that represent a lot of what we want to capture, they seem to be unreliable.
- Sometimes certain elements don't exist, or change their data type randomly. However, the human-readable text
- is always there and in the same exact format, so we just parse that instead.
-
- :rtype: str
-
- """
- if self._dimension_text is None:
- for line in self.metadata['ImageTextInfo']['SLxImageTextInfo'].values():
- if "Dimensions:" in line:
- metadata = line
- break
- else:
- raise ValueError("Could not parse metadata dimensions!")
- for line in metadata.split("\r\n"):
- if line.startswith("Dimensions:"):
- self._dimension_text = line
- break
- else:
- raise ValueError("Could not parse metadata dimensions!")
- return self._dimension_text
-
- @property
- def _channels(self):
- """
- These are labels created by the NIS Elements user. Typically they may a short description of the filter cube
- used (e.g. "bright field", "GFP", etc.)
-
- :rtype: str
-
- """
- metadata = self.metadata['ImageMetadataSeq']['SLxPictureMetadata']['sPicturePlanes']
- try:
- validity = self.metadata['ImageMetadata']['SLxExperiment']['ppNextLevelEx'][''][0]['ppNextLevelEx'][''][0]['pItemValid']
- except KeyError:
- # If none of the channels have been deleted, there is no validity list, so we just make one
- validity = [True for _ in metadata]
- # Channel information is contained in dictionaries with the keys a0, a1...an where the number
- # indicates the order in which the channel is stored. So by sorting the dicts alphabetically
- # we get the correct order.
- for (label, chan), valid in zip(sorted(metadata['sPlaneNew'].items()), validity):
- if not valid:
- continue
- yield chan['sDescription']
-
- def _calculate_image_group_number(self, time_index, fov, z_level):
- """
- Images are grouped together if they share the same time index, field of view, and z-level.
-
- :type time_index: int
- :type fov: int
- :type z_level: int
-
- :rtype: int
-
- """
- return time_index * self._field_of_view_count * self._z_level_count + (fov * self._z_level_count + z_level)
-
- @property
- def _channel_offset(self):
- """
- Image data is interleaved for each image set. That is, if there are four images in a set, the first image
- will consist of pixels 1, 5, 9, etc, the second will be pixels 2, 6, 10, and so forth.
-
- :rtype: dict
-
- """
- channel_offset = {}
- for n, channel in enumerate(self._channels):
- channel_offset[channel] = n
- return channel_offset
-
- @property
- def _absolute_start(self):
- """
- The date and time when acquisition began.
-
- :rtype: datetime.datetime()
-
- """
- for line in self.metadata['ImageTextInfo']['SLxImageTextInfo'].values():
- absolute_start_12 = None
- absolute_start_24 = None
- # ND2s seem to randomly switch between 12- and 24-hour representations.
- try:
- absolute_start_24 = datetime.strptime(line, "%m/%d/%Y %H:%M:%S")
- except ValueError:
- pass
- try:
- absolute_start_12 = datetime.strptime(line, "%m/%d/%Y %I:%M:%S %p")
- except ValueError:
- pass
- if not absolute_start_12 and not absolute_start_24:
- continue
- return absolute_start_12 if absolute_start_12 else absolute_start_24
- raise ValueError("This ND2 has no recorded start time. This is probably a bug.")
-
- @property
- def _channel_count(self):
- """
- The number of different channels used, including bright field.
-
- :rtype: int
-
- """
- pattern = r""".*?λ\((\d+)\).*?"""
- try:
- count = int(re.match(pattern, self._dimensions).group(1))
- except AttributeError:
- return 1
- else:
- return count
-
- @property
- def _field_of_view_count(self):
- """
- The metadata contains information about fields of view, but it contains it even if some fields
- of view were cropped. We can't find anything that states which fields of view are actually
- in the image data, so we have to calculate it. There probably is something somewhere, since
- NIS Elements can figure it out, but we haven't found it yet.
-
- :rtype: int
-
- """
- pattern = r""".*?XY\((\d+)\).*?"""
- try:
- count = int(re.match(pattern, self._dimensions).group(1))
- except AttributeError:
- return 1
- else:
- return count
-
- @property
- def _time_index_count(self):
- """
- The number of cycles.
-
- :rtype: int
-
- """
- pattern = r""".*?T'\((\d+)\).*?"""
- try:
- count = int(re.match(pattern, self._dimensions).group(1))
- except AttributeError:
- return 1
- else:
- return count
-
- @property
- def _z_level_count(self):
- """
- The number of different levels in the Z-plane.
-
- :rtype: int
-
- """
- pattern = r""".*?Z\((\d+)\).*?"""
- try:
- count = int(re.match(pattern, self._dimensions).group(1))
- except AttributeError:
- return 1
- else:
- return count
-
- @property
- def _image_count(self):
- """
- The total number of images in the ND2. Warning: this may be inaccurate as it includes "gap" images.
-
- :rtype: int
-
- """
- return self.metadata['ImageAttributes']['SLxImageAttributes']['uiSequenceCount']
-
- def _parse_metadata(self):
- """
- Reads all metadata.
-
- """
- for label in self._label_map.keys():
- if label.endswith("LV!") or "LV|" in label:
- data = self._read_chunk(self._label_map[label])
- stop = label.index("LV")
- self.metadata[label[:stop]] = self._read_metadata(data, 1)
-
- def _read_map(self):
- """
- Every label ends with an exclamation point, however, we can't directly search for those to find all the labels
- as some of the bytes contain the value 33, which is the ASCII code for "!". So we iteratively find each label,
- grab the subsequent data (always 16 bytes long), advance to the next label and repeat.
-
- """
- self._file_handle.seek(-8, 2)
- chunk_map_start_location = struct.unpack("Q", self._file_handle.read(8))[0]
- self._file_handle.seek(chunk_map_start_location)
- raw_text = self._file_handle.read(-1)
- label_start = raw_text.index(Nd2Parser.CHUNK_MAP_START) + 32
-
- while True:
- data_start = raw_text.index("!", label_start) + 1
- key = raw_text[label_start: data_start]
- location, length = struct.unpack("QQ", raw_text[data_start: data_start + 16])
- if key == Nd2Parser.CHUNK_MAP_END:
- # We've reached the end of the chunk map
- break
- self._label_map[key] = location
- label_start = data_start + 16
-
- def _read_chunk(self, chunk_location):
- """
- Gets the data for a given chunk pointer
-
- """
- self._file_handle.seek(chunk_location)
- # The chunk metadata is always 16 bytes long
- chunk_metadata = self._file_handle.read(16)
- header, relative_offset, data_length = struct.unpack("IIQ", chunk_metadata)
- if header != Nd2Parser.CHUNK_HEADER:
- raise ValueError("The ND2 file seems to be corrupted.")
- # We start at the location of the chunk metadata, skip over the metadata, and then proceed to the
- # start of the actual data field, which is at some arbitrary place after the metadata.
- self._file_handle.seek(chunk_location + 16 + relative_offset)
- return self._file_handle.read(data_length)
-
- def _parse_unsigned_char(self, data):
- return struct.unpack("B", data.read(1))[0]
-
- def _parse_unsigned_int(self, data):
- return struct.unpack("I", data.read(4))[0]
-
- def _parse_unsigned_long(self, data):
- return struct.unpack("Q", data.read(8))[0]
-
- def _parse_double(self, data):
- return struct.unpack("d", data.read(8))[0]
-
- def _parse_string(self, data):
- value = data.read(2)
- while not value.endswith("\x00\x00"):
- # the string ends at the first instance of \x00\x00
- value += data.read(2)
- return value.decode("utf16")[:-1].encode("utf8")
-
- def _parse_char_array(self, data):
- array_length = struct.unpack("Q", data.read(8))[0]
- return array.array("B", data.read(array_length))
-
- def _parse_metadata_item(self, data):
- """
- Reads hierarchical data, analogous to a Python dict.
-
- """
- new_count, length = struct.unpack("<IQ", data.read(12))
- length -= data.tell() - self._cursor_position
- next_data_length = data.read(length)
- value = self._read_metadata(next_data_length, new_count)
- # Skip some offsets
- data.read(new_count * 8)
- return value
-
- def _get_value(self, data, data_type):
- """
- ND2s use various codes to indicate different data types, which we translate here.
-
- """
- parser = {1: self._parse_unsigned_char,
- 2: self._parse_unsigned_int,
- 3: self._parse_unsigned_int,
- 5: self._parse_unsigned_long,
- 6: self._parse_double,
- 8: self._parse_string,
- 9: self._parse_char_array,
- 11: self._parse_metadata_item}
- return parser[data_type](data)
-
- def _read_metadata(self, data, count):
- """
- Iterates over each element some section of the metadata and parses it.
-
- """
- data = StringIO(data)
- metadata = {}
- for _ in xrange(count):
- self._cursor_position = data.tell()
- header = data.read(2)
- if not header:
- # We've reached the end of some hierarchy of data
- break
- data_type, name_length = map(ord, header)
- name = data.read(name_length * 2).decode("utf16")[:-1].encode("utf8")
- value = self._get_value(data, data_type)
- if name not in metadata.keys():
- metadata[name] = value
- else:
- if not isinstance(metadata[name], list):
- # We have encountered this key exactly once before. Since we're seeing it again, we know we
- # need to convert it to a list before proceeding.
- metadata[name] = [metadata[name]]
- # We've encountered this key before so we're guaranteed to be dealing with a list. Thus we append
- # the value to the already-existing list.
- metadata[name].append(value)
- return metadata
|