Browse Source

#2 finished cleaning up parser

zolfa-add_slices_loading
Jim Rybarski 10 years ago
parent
commit
fe32c62864
2 changed files with 99 additions and 13 deletions
  1. +1
    -1
      nd2reader/__init__.py
  2. +98
    -12
      nd2reader/parser.py

+ 1
- 1
nd2reader/__init__.py View File

@ -94,7 +94,7 @@ class Nd2(Nd2Parser):
:rtype: nd2reader.model.Image() or None
"""
image_set_number = self._calculate_image_set_number(time_index, field_of_view, z_level)
image_set_number = self._calculate_image_group_number(time_index, field_of_view, z_level)
try:
timestamp, raw_image_data = self._get_raw_image_data(image_set_number, self._channel_offset[channel_name])
image = Image(timestamp, raw_image_data, field_of_view, channel_name, z_level, self.height, self.width)


+ 98
- 12
nd2reader/parser.py View File

@ -14,6 +14,7 @@ field_of_view = namedtuple('FOV', ['number', 'x', 'y', 'z', 'pfs_offset'])
class Nd2Parser(object):
"""
Reads .nd2 files, provides an interface to the metadata, and generates numpy arrays from the image data.
You should not ever need to instantiate this class manually unless you're a developer.
"""
CHUNK_HEADER = 0xabeceda
@ -37,20 +38,48 @@ class Nd2Parser(object):
self._fh = open(self._filename, "rb")
return self._fh
def _get_raw_image_data(self, image_set_number, channel_offset):
chunk = self._label_map["ImageDataSeq|%d!" % image_set_number]
def _get_raw_image_data(self, image_group_number, channel_offset):
"""
Reads the raw bytes and the timestamp of an image.
:param image_group_number: groups are made of images with the same time index, field of view and z-level.
:type image_group_number: int
:param channel_offset: the offset in the array where the bytes for this image are found.
:type channel_offset: int
:return: (int, array.array()) or None
"""
chunk = self._label_map["ImageDataSeq|%d!" % image_group_number]
data = self._read_chunk(chunk)
# All images in the same image group share the same timestamp! So if you have complicated image data,
# your timestamps may not be entirely accurate. Practically speaking though, they'll only be off by a few
# seconds unless you're doing something super weird.
timestamp = struct.unpack("d", data[:8])[0]
# The images for the various channels are interleaved within each other.
image_set_data = array.array("H", data)
image_group_data = array.array("H", data)
image_data_start = 4 + channel_offset
image_data = image_set_data[image_data_start::self._channel_count]
# The images for the various channels are interleaved within the same array. For example, the second image
# of a four image group will be composed of bytes 2, 6, 10, etc. If you understand why someone would design
# a data structure that way, please send the author of this library a message.
image_data = image_group_data[image_data_start::self._channel_count]
# Skip images that are all zeros! This is important, since NIS Elements creates blank "gap" images if you
# don't have the same number of images each cycle. We discovered this because we only took GFP images every
# other cycle to reduce phototoxicity, but NIS Elements still allocated memory as if we were going to take them
# every cyle.
if np.any(image_data):
return timestamp, image_data
return None
@property
def _dimensions(self):
"""
While there are metadata values that represent a lot of what we want to capture, they seem to be unreliable.
Sometimes certain elements don't exist, or change their data type randomly. However, the human-readable text
is always there and in the same exact format, so we just parse that instead.
:rtype: str
"""
if self._dimension_text is None:
for line in self.metadata['ImageTextInfo']['SLxImageTextInfo'].values():
if "Dimensions:" in line:
@ -68,6 +97,13 @@ class Nd2Parser(object):
@property
def _channels(self):
"""
These are labels created by the NIS Elements user. Typically they may a short description of the filter cube
used (e.g. "bright field", "GFP", etc.)
:rtype: str
"""
metadata = self.metadata['ImageMetadataSeq']['SLxPictureMetadata']['sPicturePlanes']
try:
validity = self.metadata['ImageMetadata']['SLxExperiment']['ppNextLevelEx'][''][0]['ppNextLevelEx'][''][0]['pItemValid']
@ -82,15 +118,26 @@ class Nd2Parser(object):
continue
yield chan['sDescription']
def _calculate_image_set_number(self, time_index, fov, z_level):
def _calculate_image_group_number(self, time_index, fov, z_level):
"""
Images are grouped together if they share the same time index, field of view, and z-level.
:type time_index: int
:type fov: int
:type z_level: int
:rtype: int
"""
return time_index * self._field_of_view_count * self._z_level_count + (fov * self._z_level_count + z_level)
@property
def _channel_offset(self):
"""
Image data is interleaved for each image set. That is, if there are four images in a set, the first image
will consist of pixels 1, 5, 9, etc, the second will be pixels 2, 6, 10, and so forth. Why this would be the
case is beyond me, but that's how it works.
will consist of pixels 1, 5, 9, etc, the second will be pixels 2, 6, 10, and so forth.
:rtype: int
"""
channel_offset = {}
@ -100,6 +147,12 @@ class Nd2Parser(object):
@property
def _absolute_start(self):
"""
The date and time when acquisition began.
:rtype: datetime.datetime()
"""
for line in self.metadata['ImageTextInfo']['SLxImageTextInfo'].values():
absolute_start_12 = None
absolute_start_24 = None
@ -119,6 +172,12 @@ class Nd2Parser(object):
@property
def _channel_count(self):
"""
The number of different channels used, including bright field.
:rtype: int
"""
pattern = r""".*?λ\((\d+)\).*?"""
try:
count = int(re.match(pattern, self._dimensions).group(1))
@ -135,6 +194,8 @@ class Nd2Parser(object):
in the image data, so we have to calculate it. There probably is something somewhere, since
NIS Elements can figure it out, but we haven't found it yet.
:rtype: int
"""
pattern = r""".*?XY\((\d+)\).*?"""
try:
@ -162,6 +223,12 @@ class Nd2Parser(object):
@property
def _z_level_count(self):
"""
The number of different levels in the Z-plane.
:rtype: int
"""
pattern = r""".*?Z\((\d+)\).*?"""
try:
count = int(re.match(pattern, self._dimensions).group(1))
@ -172,13 +239,19 @@ class Nd2Parser(object):
@property
def _image_count(self):
return self.metadata['ImageAttributes']['SLxImageAttributes']['uiSequenceCount']
"""
The total number of images in the ND2. Warning: this may be inaccurate as it includes "gap" images.
@property
def _sequence_count(self):
return self.metadata['ImageEvents']['RLxExperimentRecord']['uiCount']
:rtype: int
"""
return self.metadata['ImageAttributes']['SLxImageAttributes']['uiSequenceCount']
def _parse_metadata(self):
"""
Reads all metadata.
"""
for label in self._label_map.keys():
if label.endswith("LV!") or "LV|" in label:
data = self._read_chunk(self._label_map[label])
@ -248,6 +321,10 @@ class Nd2Parser(object):
return array.array("B", data.read(array_length))
def _parse_metadata_item(self, data):
"""
Reads hierarchical data, analogous to a Python dict.
"""
new_count, length = struct.unpack("<IQ", data.read(12))
length -= data.tell() - self._cursor_position
next_data_length = data.read(length)
@ -257,6 +334,10 @@ class Nd2Parser(object):
return value
def _get_value(self, data, data_type):
"""
ND2s use various codes to indicate different data types, which we translate here.
"""
parser = {1: self._parse_unsigned_char,
2: self._parse_unsigned_int,
3: self._parse_unsigned_int,
@ -268,12 +349,17 @@ class Nd2Parser(object):
return parser[data_type](data)
def _read_metadata(self, data, count):
"""
Iterates over each element some section of the metadata and parses it.
"""
data = StringIO(data)
metadata = {}
for _ in xrange(count):
self._cursor_position = data.tell()
header = data.read(2)
if not header:
# We've reached the end of some hierarchy of data
break
data_type, name_length = map(ord, header)
name = data.read(name_length * 2).decode("utf16")[:-1].encode("utf8")


Loading…
Cancel
Save