Tesi magistrale
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

274 lines
9.8 KiB

%%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%%
\chapter{Apparato sperimentale}
\label{cap:methods}
L'apparato sperimentale realizzato consiste in un microscopio
invertito, progettato con la collaborazione dell'Officina Meccanica
del LENS, che combina l'illuminazione a luce trasmessa con un sistema
di due pinzette ottiche posizionabili elettronicamente e con uno
schema di microscopia di epifluorescenza, in grado di raggiungere
la sensibilità di singola molecola e di alternare diversi schemi
di illuminazione (campo largo, TIRF, HILO).
Una rappresentazione schematica del microscopio è mostrata in figura
\ref{fig:microscope}.
%%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%%
Il sistema è ottimizzato per consentire la coesistenza e il
funzionamento simultaneo - senza interferenze - dei tre principali
schemi di microscopia e manipolazione:
\begin{description}
\item[Illuminazione a luce trasmessa:] la luce emessa da una
sorgente LED a spettro largo viene collimata da un
condensatore e trasmessa dall'alto verso il basso attraverso
il campione.
L'obiettivo posto sotto il campione raccoglie la luce
trasmessa e ricostruisce un'immagine ingrandita del
contrasto di densità dello stesso.
\item[Pinzette ottiche:] due intensi fasci laser vengono
collimati sul piano focale posteriore dell'obiettivo,
quindi focalizzati sul campione. In questo modo possono
essere usati per intrappolare e manipolare microsfere
in soluzione. La radiazione laser diffusa che attraversa
il campione e viene raccolta dal condensatore può essere
analizzata per monitorare lo stato delle trappole e lo
spostamento dal centro delle sfere intrappolate.
\item[Epifluorescenza:] Un fascio laser di eccitazione viene
focalizzato sul piano focale posteriore dell'obiettivo, e
quindi trasmesso collimato attraverso il campione. La
radiazione di fluorescenza emessa all'indietro dal campione
viene nuovamente raccolta dall'obiettivo e attraverso
un opportuno specchio dicroico disaccoppiata dal fascio
di eccitazione.
\end{description}
\begin{figure}[ht]
\centering
\includegraphics[width=1.1\linewidth]{images/microscope.pdf}
\caption{Schema delle componenti principali del microscopio e dei percorsi
ottici utilizzati. A: luce trasmessa, B: pinzette ottiche, C: epifluorescenza.}
\label{fig:microscope}
\end{figure}
Per evitare interferenze tra i tre schemi è stato necessario
scegliere opportune lunghezze d'onda per la radiazione di
illuminazione e, di conseguenza, appropriati specchi dicroici
e filtri.
L'illuminazione a luce trasmessa è realizzata sfruttando una
sorgente LED con spettro di emissione centrato a \SI{780}{\nm},
le due pinzette ottiche vengono realizzate partendo da un laser
a stato solido Nd:YAG con emissione a \SI{1064}{\nm}. Per la
microscopia di fluorescenza si usano per l'eccitazione sorgenti
laser a diodo alle lunghezze d'onda di \SIlist{488;532;635}{\nm} e
l'emissione dei fluorofori fino a \SI{700}{\nm} può essere raccolta
e disaccopiata dall'illuminazione a luce trasmessa.
\section{Microscopio e traslatori}
Gli elementi ottici e optomeccanici principali che costituiscono
il microscopio sono assemblati su una struttura metallica
personalizzata, realizzata dall'Officina Meccanica del LENS.
Questa struttura è poggiata su un tavolo ottico attraverso quattro
elastomeri termoplastici (Newport NewDamp™) in grado di attenuare
significativamente le vibrazioni meccaniche.
Il tavolo ottico (Melles-Griot) è a sua volta isolato dal pavimento
attraverso un sistema di smorzamento attivo ad aria compressa.
Una miscela in soluzione acquosa delle varie molecole necessarie
per gli esperimenti viene caricata in una camera di reazione
realizzata tra due vetrini (portaoggetti e coprioggetti).
Il preparato così assemblato viene fissato nel microscopio, attraverso
quattro viti, su un tavolino traslatore (il \textit{traslatore corto raggio} in figura \ref{fig:microscope}), trovandosi quindi tra il
\textit{condensatore} e l'\textit{obiettivo}.
La posizione del campione rispetto al centro del percorso ottico
può essere modificata attraverso due traslatori controllati
elettronicamente, uno di tipo piezoelettrico (Physik Instrumente, ??)
per spostamenti veloci e con precisione nanometrica, con una corsa di
\SI{100}{\um} per asse, e uno di tipo motore passo-passo
(Steinmeyer, KDT105-PM) per spostamenti macroscopici con una corsa di \SI{50}{\mm} per asse.
Il piano focale può essere modificato variando la posizione
dell'obiettivo, grazie a un posizionatore verticale piezoelettrico
(Physik Instrumente, PIFOC™ ??) con con una corsa di \SI{400}{\um}
e risoluzione nanometrica.
I posizionatori dell
\section{Force-clamp}
In figura \ref{fig:setup} è mostrato uno schema integrale
dell'apparato realizzato.
Le componenti principali sono descritte nella sezione \ref{sec:setup}.
Successivamente, nella sezione \ref{sec:stabilization} è descritto il
sistema di stabilizzazione meccanica introdotto per compensare lo
spostamento
del campione dovuto a deriva termica e oscillazioni acustiche.
Nella sezione \ref{sec:calibration} è descritta nel dettaglio la
procedura usata per la calibrazione dei parametri delle trappole
ottiche.
L'esperimento tipico utilizzato per studiare l'interazione tra una
proteina e un microfilamento di actina consiste in un saggio a tre
sfere, o \textit{3-beads assay}. I dettagli per la realizzazione di
questo esperimento sono illustrati nella sezione \ref{sec:3beads}.
\section{Apparato sperimentale}
\label{sec:setup}
L'apparato sperimentale è stato realizzato presso i laboratori del
LENS, sulla base dell'apparato utilizzato in precedenza dal di
Biofisica di Singola Molecola per lo studio delle interazioni tra
miosina e filamenti di actina e repressori della trascrizione
e filamenti di DNA.
L'apparto si compone di N parti principali:
\begin{description}
\item[Pinzette ottiche:] Una coppia di fasci gaussiani a \SI{1064}{\nm}, ottenuti da un laser a stato solido,
\end{description}
\begin{sidewaysfigure}
\includegraphics[width=1.0\linewidth]{images/Setup.pdf}
\caption{Caption}
\label{fig:setup}
\end{sidewaysfigure}
\begin{sidewaystable}
\centering
\begin{tabular}{>{\tt}l l l >{\it}l l}
\toprule
Code & Type & Usage & Parameters & Product ID\\
\midrule
\multicolumn{5}{l}{\it Fluorescence Excitation Path}\\
F-Clean635
& Bandpass Filter
& \SI{635}{\nm} laser clean-up
& $\lambda_{centr}: \SI{640}{\nm},
bw: \SI{14}{\nm}$
& FF01-640/14-25\\
L-TS1a
& Plano-Convex Spherical Lens
& Telescope for \SI{635}{\nm} laser
& f: \SI{0}{\mm}
& \\
L-TS1b
& &
& f: \SI{0}{\mm}
& \\
L-TS2a
&
& Telescope for \SI{488}{\nm} laser
& f: \SI{0}{\mm}
& \\
L-TS2b
& &
& f: \SI{0}{\mm}
& \\
DIC-532
& Single-edge Dichroic Filter
& Excitation beam multiplexing
& $\lambda_{edge}: \SI{532}{\nm}$
& Di02-R532-25-D\\
DIC-488
& &
& $\lambda_{edge}: \SI{488}{\nm}$
& Di02-R488-25-D\\
L-TS3a
& Achromatic Doublet
& Telescope for comb. ex. lasers
& f: \SI{0}{\mm}
& \\
L-TS3b
& &
& f: \SI{0}{\mm}
& \\
L-Exc
&
& Excitation beam focusing
& f: \SI{0}{\mm}
& \\
DIC-Fluor
& Quad-edge Dichroic Filter
& Excitation/Emission separation
& $\lambda_{edge}: \SIlist{405;488;532;635}{\nm}$
& Di03-R405/488/532/635-t1 \\
\multicolumn{5}{l}{\it Tweezers Path}\\
L-TS4a
& Plano-Convex Spherical Lens
& Telescope matching isolator size
& f: \SI{0}{\mm}
& \\
L-TS4b
& &
& f: \SI{0}{\mm}
& \\
L-TS5a
& Plano-Convex Spherical Lens
& Telescope after isolator
& f: \SI{0}{\mm}
& \\
L-TS5b
& &
& f: \SI{0}{\mm}
& \\
L-Twz1
& Plano-Convex Spherical Lens
& Telescope after isolator
& f: \SI{0}{\mm}
& \\
L-Twz2
& &
& f: \SI{0}{\mm}
& \\
DIC-Twz1
& Single-edge Dichroic Filter
& Tweezer beam insertion
& $\lambda_{edge}: \SI{1064}{\nm}$
& \\
\multicolumn{5}{l}{\it Imaging Path}\\
L-Im1
& Tube Lens
& Tube Lens
& f: \SI{0}{\mm}
& \\
L-Im2
& Imaging Lens
& Imaging Lens
& f: \SI{0}{\mm}
& \\
DIC-BF
& Single-edge Dichroic Filter
& Fluorescence/Brightfield demux
& $\lambda_{edge}: \SI{705}{\nm}$
& FF705-Di01-25x36\\
F-BlockBF
& Shortpass Filter
& Residual brightfield suppression
& $\lambda_{cut}: \SI{700}{\nm}$
& FESH0700\\
F-Emiss
& Quad-band bandpass Filter
& Fluorophore emission filtering
& $\lambda_{centr}: \SIlist{446;510;581;703}{\nm}$
& FF01-446/510/581/703\\
F-BlockTwz
& Bandstop filter
& Fluorophore emission filtering
& $\lambda_{centr}: \SIlist{446;510;581;703}{\nm}$
& FF01-446/510/581/703\\
\end{tabular}
\caption{Caption}
\label{tab:my_label}
\end{sidewaystable}
\section{Stabilizzazione meccanica}
\label{sec:stabilization}