|
package p2p
|
|
|
|
import (
|
|
"context"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"math"
|
|
"math/rand"
|
|
"net"
|
|
"net/url"
|
|
"runtime/debug"
|
|
"sort"
|
|
"strconv"
|
|
"sync"
|
|
"time"
|
|
|
|
"github.com/tendermint/tendermint/libs/cmap"
|
|
"github.com/tendermint/tendermint/libs/log"
|
|
"github.com/tendermint/tendermint/libs/service"
|
|
tmconn "github.com/tendermint/tendermint/p2p/conn"
|
|
)
|
|
|
|
// PeerAddress is a peer address URL.
|
|
type PeerAddress struct {
|
|
*url.URL
|
|
}
|
|
|
|
// ParsePeerAddress parses a peer address URL into a PeerAddress.
|
|
func ParsePeerAddress(address string) (PeerAddress, error) {
|
|
u, err := url.Parse(address)
|
|
if err != nil || u == nil {
|
|
return PeerAddress{}, fmt.Errorf("unable to parse peer address %q: %w", address, err)
|
|
}
|
|
if u.Scheme == "" {
|
|
u.Scheme = string(defaultProtocol)
|
|
}
|
|
pa := PeerAddress{URL: u}
|
|
if err = pa.Validate(); err != nil {
|
|
return PeerAddress{}, err
|
|
}
|
|
return pa, nil
|
|
}
|
|
|
|
// NodeID returns the address node ID.
|
|
func (a PeerAddress) NodeID() NodeID {
|
|
return NodeID(a.User.Username())
|
|
}
|
|
|
|
// Resolve resolves a PeerAddress into a set of Endpoints, by expanding
|
|
// out a DNS name in Host to its IP addresses. Field mapping:
|
|
//
|
|
// Scheme → Endpoint.Protocol
|
|
// Host → Endpoint.IP
|
|
// User → Endpoint.PeerID
|
|
// Port → Endpoint.Port
|
|
// Path+Query+Fragment,Opaque → Endpoint.Path
|
|
//
|
|
func (a PeerAddress) Resolve(ctx context.Context) ([]Endpoint, error) {
|
|
ips, err := net.DefaultResolver.LookupIP(ctx, "ip", a.Host)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
port, err := a.parsePort()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
path := a.Path
|
|
if a.RawPath != "" {
|
|
path = a.RawPath
|
|
}
|
|
if a.Opaque != "" { // used for e.g. "about:blank" style URLs
|
|
path = a.Opaque
|
|
}
|
|
if a.RawQuery != "" {
|
|
path += "?" + a.RawQuery
|
|
}
|
|
if a.RawFragment != "" {
|
|
path += "#" + a.RawFragment
|
|
}
|
|
|
|
endpoints := make([]Endpoint, len(ips))
|
|
for i, ip := range ips {
|
|
endpoints[i] = Endpoint{
|
|
PeerID: a.NodeID(),
|
|
Protocol: Protocol(a.Scheme),
|
|
IP: ip,
|
|
Port: port,
|
|
Path: path,
|
|
}
|
|
}
|
|
return endpoints, nil
|
|
}
|
|
|
|
// Validates validates a PeerAddress.
|
|
func (a PeerAddress) Validate() error {
|
|
if a.Scheme == "" {
|
|
return errors.New("no protocol")
|
|
}
|
|
if id := a.User.Username(); id == "" {
|
|
return errors.New("no peer ID")
|
|
} else if err := NodeID(id).Validate(); err != nil {
|
|
return fmt.Errorf("invalid peer ID: %w", err)
|
|
}
|
|
if a.Hostname() == "" && len(a.Query()) == 0 && a.Opaque == "" {
|
|
return errors.New("no host or path given")
|
|
}
|
|
if port, err := a.parsePort(); err != nil {
|
|
return err
|
|
} else if port > 0 && a.Hostname() == "" {
|
|
return errors.New("cannot specify port without host")
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// parsePort returns the port number as a uint16.
|
|
func (a PeerAddress) parsePort() (uint16, error) {
|
|
if portString := a.Port(); portString != "" {
|
|
port64, err := strconv.ParseUint(portString, 10, 16)
|
|
if err != nil {
|
|
return 0, fmt.Errorf("invalid port %q: %w", portString, err)
|
|
}
|
|
return uint16(port64), nil
|
|
}
|
|
return 0, nil
|
|
}
|
|
|
|
// PeerStatus specifies peer statuses.
|
|
type PeerStatus string
|
|
|
|
const (
|
|
PeerStatusNew = PeerStatus("new") // New peer which we haven't tried to contact yet.
|
|
PeerStatusUp = PeerStatus("up") // Peer which we have an active connection to.
|
|
PeerStatusDown = PeerStatus("down") // Peer which we're temporarily disconnected from.
|
|
PeerStatusRemoved = PeerStatus("removed") // Peer which has been removed.
|
|
PeerStatusBanned = PeerStatus("banned") // Peer which is banned for misbehavior.
|
|
)
|
|
|
|
// PeerError is a peer error reported by a reactor via the Error channel. The
|
|
// severity may cause the peer to be disconnected or banned depending on policy.
|
|
type PeerError struct {
|
|
PeerID NodeID
|
|
Err error
|
|
Severity PeerErrorSeverity
|
|
}
|
|
|
|
// PeerErrorSeverity determines the severity of a peer error.
|
|
type PeerErrorSeverity string
|
|
|
|
const (
|
|
PeerErrorSeverityLow PeerErrorSeverity = "low" // Mostly ignored.
|
|
PeerErrorSeverityHigh PeerErrorSeverity = "high" // May disconnect.
|
|
PeerErrorSeverityCritical PeerErrorSeverity = "critical" // Ban.
|
|
)
|
|
|
|
// PeerUpdatesCh defines a wrapper around a PeerUpdate go channel that allows
|
|
// a reactor to listen for peer updates and safely close it when stopping.
|
|
type PeerUpdatesCh struct {
|
|
closeOnce sync.Once
|
|
|
|
// updatesCh defines the go channel in which the router sends peer updates to
|
|
// reactors. Each reactor will have its own PeerUpdatesCh to listen for updates
|
|
// from.
|
|
updatesCh chan PeerUpdate
|
|
|
|
// doneCh is used to signal that a PeerUpdatesCh is closed. It is the
|
|
// reactor's responsibility to invoke Close.
|
|
doneCh chan struct{}
|
|
}
|
|
|
|
// NewPeerUpdates returns a reference to a new PeerUpdatesCh.
|
|
func NewPeerUpdates(updatesCh chan PeerUpdate) *PeerUpdatesCh {
|
|
return &PeerUpdatesCh{
|
|
updatesCh: updatesCh,
|
|
doneCh: make(chan struct{}),
|
|
}
|
|
}
|
|
|
|
// Updates returns a read-only go channel where a consuming reactor can listen
|
|
// for peer updates sent from the router.
|
|
func (puc *PeerUpdatesCh) Updates() <-chan PeerUpdate {
|
|
return puc.updatesCh
|
|
}
|
|
|
|
// Close closes the PeerUpdatesCh channel. It should only be closed by the respective
|
|
// reactor when stopping and ensure nothing is listening for updates.
|
|
//
|
|
// NOTE: After a PeerUpdatesCh is closed, the router may safely assume it can no
|
|
// longer send on the internal updatesCh, however it should NEVER explicitly close
|
|
// it as that could result in panics by sending on a closed channel.
|
|
func (puc *PeerUpdatesCh) Close() {
|
|
puc.closeOnce.Do(func() {
|
|
close(puc.doneCh)
|
|
})
|
|
}
|
|
|
|
// Done returns a read-only version of the PeerUpdatesCh's internal doneCh go
|
|
// channel that should be used by a router to signal when it is safe to explicitly
|
|
// not send any peer updates.
|
|
func (puc *PeerUpdatesCh) Done() <-chan struct{} {
|
|
return puc.doneCh
|
|
}
|
|
|
|
// PeerUpdate is a peer status update for reactors.
|
|
type PeerUpdate struct {
|
|
PeerID NodeID
|
|
Status PeerStatus
|
|
}
|
|
|
|
// PeerScore is a numeric score assigned to a peer (higher is better).
|
|
type PeerScore uint16
|
|
|
|
const (
|
|
// PeerScorePersistent is added for persistent peers.
|
|
PeerScorePersistent PeerScore = 100
|
|
)
|
|
|
|
// PeerManager manages peer lifecycle information, using a peerStore for
|
|
// underlying storage. Its primary purpose is to determine which peers to
|
|
// connect to next, make sure a peer only has a single active connection (either
|
|
// inbound or outbound), and evict peers to make room for higher-scored peers.
|
|
// It does not manage actual connections (this is handled by the Router),
|
|
// only the peer lifecycle state.
|
|
//
|
|
// For an outbound connection, the flow is as follows:
|
|
// - DialNext: returns a peer address to dial, marking the peer as dialing.
|
|
// - DialFailed: reports a dial failure, unmarking the peer as dialing.
|
|
// - Dialed: successfully dialed, unmarking as dialing and marking as connected
|
|
// (or erroring if already connected).
|
|
// - Ready: routing is up, broadcasts a PeerStatusUp peer update to subscribers.
|
|
// - Disconnected: peer disconnects, unmarking as connected and broadcasts a
|
|
// PeerStatusDown peer update.
|
|
//
|
|
// For an inbound connection, the flow is as follows:
|
|
// - Accepted: successfully accepted connection, marking as connected (or erroring
|
|
// if already connected).
|
|
// - Ready: routing is up, broadcasts a PeerStatusUp peer update to subscribers.
|
|
// - Disconnected: peer disconnects, unmarking as connected and broadcasts a
|
|
// PeerStatusDown peer update.
|
|
//
|
|
// If we need to evict a peer, typically because we have connected to additional
|
|
// higher-scored peers and need to shed lower-scored ones, the flow is as follows:
|
|
// - EvictNext: returns a peer ID to evict, marking peer as evicting.
|
|
// - Disconnected: peer was disconnected, unmarking as connected and evicting,
|
|
// and broadcasts a PeerStatusDown peer update.
|
|
//
|
|
// We track dialing and connected states independently. This allows us to accept
|
|
// an inbound connection from a peer while the router is also dialing an
|
|
// outbound connection to that same peer, which will cause the dialer to
|
|
// eventually error (when attempting to mark the peer as connected). This also
|
|
// avoids race conditions where multiple goroutines may end up dialing a peer if
|
|
// an incoming connection was briefly accepted and disconnected while we were
|
|
// also dialing.
|
|
type PeerManager struct {
|
|
options PeerManagerOptions
|
|
|
|
mtx sync.Mutex
|
|
store *peerStore
|
|
dialing map[NodeID]bool
|
|
connected map[NodeID]bool
|
|
evicting map[NodeID]bool
|
|
subscriptions map[*PeerUpdatesCh]*PeerUpdatesCh // keyed by struct identity (address)
|
|
}
|
|
|
|
// PeerManagerOptions specifies options for a PeerManager.
|
|
type PeerManagerOptions struct {
|
|
// PersistentPeers are peers that we want to maintain persistent connections
|
|
// to. These will be scored higher than other peers, and if
|
|
// MaxConnectedUpgrade is non-zero any lower-scored peers will be evicted if
|
|
// necessary to make room for these.
|
|
PersistentPeers []NodeID
|
|
|
|
// MaxConnected is the maximum number of connected peers (inbound and
|
|
// outbound). 0 means no limit.
|
|
MaxConnected uint16
|
|
|
|
// MaxConnectedUpgrade is the maximum number of additional connections to
|
|
// use for probing any better-scored peers to upgrade to when all connection
|
|
// slots are full. 0 disables peer upgrading.
|
|
//
|
|
// For example, if we are already connected to MaxConnected peers, but we
|
|
// know or learn about better-scored peers (e.g. configured persistent
|
|
// peers) that we are not connected too, then we can probe these peers by
|
|
// using up to MaxConnectedUpgrade connections, and once connected evict the
|
|
// lowest-scored connected peers. This also works for inbound connections,
|
|
// i.e. if a higher-scored peer attempts to connect to us, we can accept
|
|
// the connection and evict a lower-scored peer.
|
|
MaxConnectedUpgrade uint16
|
|
|
|
// MinRetryTime is the minimum time to wait between retries. Retry times
|
|
// double for each retry, up to MaxRetryTime. 0 disables retries.
|
|
MinRetryTime time.Duration
|
|
|
|
// MaxRetryTime is the maximum time to wait between retries. 0 means
|
|
// no maximum, in which case the retry time will keep doubling.
|
|
MaxRetryTime time.Duration
|
|
|
|
// MaxRetryTimePersistent is the maximum time to wait between retries for
|
|
// peers listed in PersistentPeers. 0 uses MaxRetryTime instead.
|
|
MaxRetryTimePersistent time.Duration
|
|
|
|
// RetryTimeJitter is the upper bound of a random interval added to
|
|
// retry times, to avoid thundering herds. 0 disables jutter.
|
|
RetryTimeJitter time.Duration
|
|
}
|
|
|
|
// isPersistent is a convenience function that checks if the given peer ID
|
|
// is contained in PersistentPeers. It just uses a linear search, since
|
|
// PersistentPeers is expected to be small.
|
|
func (o PeerManagerOptions) isPersistent(id NodeID) bool {
|
|
for _, p := range o.PersistentPeers {
|
|
if id == p {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// NewPeerManager creates a new peer manager.
|
|
func NewPeerManager(options PeerManagerOptions) *PeerManager {
|
|
return &PeerManager{
|
|
options: options,
|
|
// FIXME: Once the store persists data, we need to update existing
|
|
// peers in the store with any new information, e.g. changes to
|
|
// PersistentPeers configuration.
|
|
store: newPeerStore(),
|
|
dialing: map[NodeID]bool{},
|
|
connected: map[NodeID]bool{},
|
|
evicting: map[NodeID]bool{},
|
|
subscriptions: map[*PeerUpdatesCh]*PeerUpdatesCh{},
|
|
}
|
|
}
|
|
|
|
// Add adds a peer to the manager, given as an address. If the peer already
|
|
// exists, the address is added to it.
|
|
func (m *PeerManager) Add(address PeerAddress) error {
|
|
if err := address.Validate(); err != nil {
|
|
return err
|
|
}
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
peer, err := m.store.Get(address.NodeID())
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if peer == nil {
|
|
peer = &peerInfo{
|
|
ID: address.NodeID(),
|
|
Persistent: m.options.isPersistent(address.NodeID()),
|
|
}
|
|
}
|
|
peer.AddAddress(address)
|
|
return m.store.Set(peer)
|
|
}
|
|
|
|
// Subscribe subscribes to peer updates. The caller must consume the peer
|
|
// updates in a timely fashion and close the subscription when done, since
|
|
// delivery is guaranteed and will block peer connection/disconnection
|
|
// otherwise.
|
|
func (m *PeerManager) Subscribe() *PeerUpdatesCh {
|
|
// FIXME: We may want to use a size 1 buffer here. When the router
|
|
// broadcasts a peer update it has to loop over all of the
|
|
// subscriptions, and we want to avoid blocking and waiting for a
|
|
// context switch before continuing to the next subscription. This also
|
|
// prevents tail latencies from compounding across updates. We also want
|
|
// to make sure the subscribers are reasonably in sync, so it should be
|
|
// kept at 1. However, this should be benchmarked first.
|
|
peerUpdates := NewPeerUpdates(make(chan PeerUpdate))
|
|
m.mtx.Lock()
|
|
m.subscriptions[peerUpdates] = peerUpdates
|
|
m.mtx.Unlock()
|
|
|
|
go func() {
|
|
<-peerUpdates.Done()
|
|
m.mtx.Lock()
|
|
delete(m.subscriptions, peerUpdates)
|
|
m.mtx.Unlock()
|
|
}()
|
|
return peerUpdates
|
|
}
|
|
|
|
// broadcast broadcasts a peer update to all subscriptions. The caller must
|
|
// already hold the mutex lock. This means the mutex is held for the duration
|
|
// of the broadcast, which we want to make sure all subscriptions receive all
|
|
// updates in the same order.
|
|
//
|
|
// FIXME: Consider using more fine-grained mutexes here, and/or a channel to
|
|
// enforce ordering of updates.
|
|
func (m *PeerManager) broadcast(peerUpdate PeerUpdate) {
|
|
for _, sub := range m.subscriptions {
|
|
select {
|
|
case sub.updatesCh <- peerUpdate:
|
|
case <-sub.doneCh:
|
|
}
|
|
}
|
|
}
|
|
|
|
// DialNext finds an appropriate peer address to dial, and marks it as dialing.
|
|
// The peer will not be returned again until Dialed() or DialFailed() is called
|
|
// for the peer and it is no longer connected. Returns an empty ID if no
|
|
// appropriate peers are available, or if all connection slots are full.
|
|
//
|
|
// We allow dialing MaxConnected+MaxConnectedUpgrade peers. Including
|
|
// MaxConnectedUpgrade allows us to dial additional peers beyond MaxConnected if
|
|
// they have a higher score than any other connected or dialing peer. If we are
|
|
// successful in dialing, and thus have more than MaxConnected connected peers,
|
|
// the lower-scored peer will be evicted via EvictNext().
|
|
func (m *PeerManager) DialNext() (NodeID, PeerAddress, error) {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
if m.options.MaxConnected > 0 &&
|
|
len(m.connected)+len(m.dialing) >= int(m.options.MaxConnected)+int(m.options.MaxConnectedUpgrade) {
|
|
return "", PeerAddress{}, nil
|
|
}
|
|
|
|
ranked, err := m.store.Ranked()
|
|
if err != nil {
|
|
return "", PeerAddress{}, err
|
|
}
|
|
for _, peer := range ranked {
|
|
if m.dialing[peer.ID] || m.connected[peer.ID] {
|
|
continue
|
|
}
|
|
|
|
for _, addressInfo := range peer.AddressInfo {
|
|
if time.Since(addressInfo.LastDialFailure) < m.retryDelay(peer, addressInfo.DialFailures) {
|
|
continue
|
|
}
|
|
|
|
// At this point we have an eligible address to dial. If we're full
|
|
// but have peer upgrade capacity (as checked above), we need to
|
|
// make sure there exists an evictable peer of a lower score that we
|
|
// can replace. If so, we can go ahead and dial this peer, and
|
|
// EvictNext() will evict a lower-scored one later.
|
|
//
|
|
// If we don't find one, there is no point in trying additional
|
|
// peers, since they will all have the same or lower score than this
|
|
// peer (since they're ordered by score via peerStore.Ranked).
|
|
//
|
|
// FIXME: There is a race condition here where, if there exists a
|
|
// single lower-scored peer, we may end up dialing multiple
|
|
// higher-scored new peers that all expect the same lower-scored
|
|
// peer to be evicted, causing us to take on too many peers. We may
|
|
// need to reserve the eviction for this specific peer such that
|
|
// others can't claim it.
|
|
if m.options.MaxConnected > 0 &&
|
|
len(m.connected) >= int(m.options.MaxConnected) &&
|
|
!m.peerIsUpgrade(peer, ranked) {
|
|
return "", PeerAddress{}, nil
|
|
}
|
|
|
|
m.dialing[peer.ID] = true
|
|
return peer.ID, addressInfo.Address, nil
|
|
}
|
|
}
|
|
return "", PeerAddress{}, nil
|
|
}
|
|
|
|
// retryDelay calculates a dial retry delay using exponential backoff, based on
|
|
// retry settings in PeerManagerOptions. If MinRetryTime is 0, this returns
|
|
// MaxInt64 (i.e. an infinite retry delay, effectively disabling retries).
|
|
func (m *PeerManager) retryDelay(peer *peerInfo, failures uint32) time.Duration {
|
|
if failures == 0 {
|
|
return 0
|
|
}
|
|
if m.options.MinRetryTime == 0 {
|
|
return time.Duration(math.MaxInt64)
|
|
}
|
|
maxDelay := m.options.MaxRetryTime
|
|
if peer.Persistent && m.options.MaxRetryTimePersistent > 0 {
|
|
maxDelay = m.options.MaxRetryTimePersistent
|
|
}
|
|
|
|
delay := m.options.MinRetryTime * time.Duration(math.Pow(2, float64(failures)))
|
|
if maxDelay > 0 && delay > maxDelay {
|
|
delay = maxDelay
|
|
}
|
|
// FIXME: This should use a PeerManager-scoped RNG.
|
|
delay += time.Duration(rand.Int63n(int64(m.options.RetryTimeJitter))) // nolint:gosec
|
|
return delay
|
|
}
|
|
|
|
// DialFailed reports a failed dial attempt. This will make the peer available
|
|
// for dialing again when appropriate.
|
|
//
|
|
// FIXME: This should probably delete or mark bad addresses/peers after some time.
|
|
func (m *PeerManager) DialFailed(peerID NodeID, address PeerAddress) error {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
delete(m.dialing, peerID)
|
|
|
|
peer, err := m.store.Get(peerID)
|
|
if err != nil || peer == nil { // Peer may have been removed while dialing, ignore.
|
|
return err
|
|
}
|
|
if addressInfo := peer.LookupAddressInfo(address); addressInfo != nil {
|
|
addressInfo.LastDialFailure = time.Now().UTC()
|
|
addressInfo.DialFailures++
|
|
return m.store.Set(peer)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Dialed marks a peer as successfully dialed. Any further incoming connections
|
|
// will be rejected, and once disconnected the peer may be dialed again.
|
|
func (m *PeerManager) Dialed(peerID NodeID, address PeerAddress) error {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
delete(m.dialing, peerID)
|
|
|
|
if m.connected[peerID] {
|
|
return fmt.Errorf("peer %v is already connected", peerID)
|
|
}
|
|
if m.options.MaxConnected > 0 &&
|
|
len(m.connected) >= int(m.options.MaxConnected)+int(m.options.MaxConnectedUpgrade) {
|
|
return fmt.Errorf("already connected to maximum number of peers")
|
|
}
|
|
|
|
peer, err := m.store.Get(peerID)
|
|
if err != nil {
|
|
return err
|
|
} else if peer == nil {
|
|
return fmt.Errorf("peer %q was removed while dialing", peerID)
|
|
}
|
|
m.connected[peerID] = true
|
|
|
|
now := time.Now().UTC()
|
|
peer.LastConnected = now
|
|
if addressInfo := peer.LookupAddressInfo(address); addressInfo != nil {
|
|
addressInfo.DialFailures = 0
|
|
addressInfo.LastDialSuccess = now
|
|
}
|
|
return m.store.Set(peer)
|
|
}
|
|
|
|
// Accepted marks an incoming peer connection successfully accepted. If the peer
|
|
// is already connected or we don't allow additional connections then this will
|
|
// return an error.
|
|
//
|
|
// If MaxConnectedUpgrade is non-zero, the accepted peer is better-scored than any
|
|
// other connected peer, and the number of connections does not exceed
|
|
// MaxConnected + MaxConnectedUpgrade then we accept the connection and rely on
|
|
// EvictNext() to evict lower-scored peers.
|
|
//
|
|
// NOTE: We can't take an address here, since e.g. TCP uses a different port
|
|
// number for outbound traffic than inbound traffic, so the peer's endpoint
|
|
// wouldn't necessarily be an appropriate address to dial.
|
|
func (m *PeerManager) Accepted(peerID NodeID) error {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
if m.connected[peerID] {
|
|
return fmt.Errorf("peer %q is already connected", peerID)
|
|
}
|
|
if m.options.MaxConnected > 0 &&
|
|
len(m.connected) >= int(m.options.MaxConnected)+int(m.options.MaxConnectedUpgrade) {
|
|
return fmt.Errorf("already connected to maximum number of peers")
|
|
}
|
|
|
|
peer, err := m.store.Get(peerID)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if peer == nil {
|
|
peer = &peerInfo{
|
|
ID: peerID,
|
|
Persistent: m.options.isPersistent(peerID),
|
|
}
|
|
}
|
|
|
|
// If we're already full (i.e. at MaxConnected), but we allow upgrades (and we
|
|
// know from the check above that we have upgrade capacity), then we can look
|
|
// for a lower-scored evictable peer, and if found we can accept this connection
|
|
// anyway and let EvictNext() evict the lower-scored peer for us.
|
|
//
|
|
// FIXME: There is a race condition here where, if there exists a single
|
|
// lower-scored peer, we may end up accepting multiple higher-scored new
|
|
// peers that all expect the same lower-scored peer to be evicted, causing
|
|
// us to take on too many peers. We may need to reserve the eviction for
|
|
// this specific peer such that others can't claim it.
|
|
if m.options.MaxConnected > 0 && len(m.connected) >= int(m.options.MaxConnected) {
|
|
ranked, err := m.store.Ranked()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if !m.peerIsUpgrade(peer, ranked) {
|
|
return fmt.Errorf("already connected to maximum number of peers")
|
|
}
|
|
}
|
|
|
|
m.connected[peerID] = true
|
|
peer.LastConnected = time.Now().UTC()
|
|
return m.store.Set(peer)
|
|
}
|
|
|
|
// Ready marks a peer as ready, broadcasting status updates to subscribers. The
|
|
// peer must already be marked as connected. This is separate from Dialed() and
|
|
// Accepted() to allow the router to set up its internal queues before reactors
|
|
// start sending messages.
|
|
func (m *PeerManager) Ready(peerID NodeID) {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
connected := m.connected[peerID]
|
|
if connected {
|
|
m.broadcast(PeerUpdate{
|
|
PeerID: peerID,
|
|
Status: PeerStatusUp,
|
|
})
|
|
}
|
|
}
|
|
|
|
// Disconnected unmarks a peer as connected, allowing new connections to be
|
|
// established.
|
|
func (m *PeerManager) Disconnected(peerID NodeID) error {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
delete(m.connected, peerID)
|
|
delete(m.evicting, peerID)
|
|
m.broadcast(PeerUpdate{
|
|
PeerID: peerID,
|
|
Status: PeerStatusDown,
|
|
})
|
|
return nil
|
|
}
|
|
|
|
// EvictNext returns the next peer to evict (i.e. disconnect), or an empty ID if
|
|
// no peers should be evicted. The evicted peer will be a lowest-scored peer
|
|
// that is currently connected and not already being evicted.
|
|
func (m *PeerManager) EvictNext() (NodeID, error) {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
if m.options.MaxConnected == 0 ||
|
|
len(m.connected)-len(m.evicting) <= int(m.options.MaxConnected) {
|
|
return "", nil
|
|
}
|
|
|
|
ranked, err := m.store.Ranked()
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
for i := len(ranked) - 1; i >= 0; i-- {
|
|
peer := ranked[i]
|
|
if m.connected[peer.ID] && !m.evicting[peer.ID] {
|
|
m.evicting[peer.ID] = true
|
|
return peer.ID, nil
|
|
}
|
|
}
|
|
return "", nil
|
|
}
|
|
|
|
// peerIsUpgrade checks whether connecting to a given peer would be an
|
|
// upgrade, i.e. that there exists a lower-scored peer that is already
|
|
// connected and not scheduled for eviction, such that connecting to
|
|
// the peer would cause a lower-scored peer to be evicted if we're full.
|
|
func (m *PeerManager) peerIsUpgrade(peer *peerInfo, ranked []*peerInfo) bool {
|
|
for i := len(ranked) - 1; i >= 0; i-- {
|
|
candidate := ranked[i]
|
|
if candidate.Score() >= peer.Score() {
|
|
return false
|
|
}
|
|
if m.connected[candidate.ID] && !m.evicting[candidate.ID] {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// GetHeight returns a peer's height, as reported via SetHeight. If the peer
|
|
// or height is unknown, this returns 0.
|
|
//
|
|
// FIXME: This is a temporary workaround for the peer state stored via the
|
|
// legacy Peer.Set() and Peer.Get() APIs, used to share height state between the
|
|
// consensus and mempool reactors. These dependencies should be removed from the
|
|
// reactors, and instead query this information independently via new P2P
|
|
// protocol additions.
|
|
func (m *PeerManager) GetHeight(peerID NodeID) (int64, error) {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
peer, err := m.store.Get(peerID)
|
|
if err != nil || peer == nil {
|
|
return 0, err
|
|
}
|
|
return peer.Height, nil
|
|
}
|
|
|
|
// SetHeight stores a peer's height, making it available via GetHeight. If the
|
|
// peer is unknown, it is created.
|
|
//
|
|
// FIXME: This is a temporary workaround for the peer state stored via the
|
|
// legacy Peer.Set() and Peer.Get() APIs, used to share height state between the
|
|
// consensus and mempool reactors. These dependencies should be removed from the
|
|
// reactors, and instead query this information independently via new P2P
|
|
// protocol additions.
|
|
func (m *PeerManager) SetHeight(peerID NodeID, height int64) error {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
peer, err := m.store.Get(peerID)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if peer == nil {
|
|
peer = &peerInfo{
|
|
ID: peerID,
|
|
Persistent: m.options.isPersistent(peerID),
|
|
}
|
|
}
|
|
peer.Height = height
|
|
return m.store.Set(peer)
|
|
}
|
|
|
|
// peerStore stores information about peers. It is currently a bare-bones
|
|
// in-memory store, and will be fleshed out later.
|
|
//
|
|
// peerStore is not thread-safe, since it assumes it is only used by PeerManager
|
|
// which handles concurrency control. This allows the manager to execute multiple
|
|
// operations atomically while it holds the mutex.
|
|
type peerStore struct {
|
|
peers map[NodeID]peerInfo
|
|
}
|
|
|
|
// newPeerStore creates a new peer store.
|
|
func newPeerStore() *peerStore {
|
|
return &peerStore{
|
|
peers: map[NodeID]peerInfo{},
|
|
}
|
|
}
|
|
|
|
// Get fetches a peer, returning nil if not found.
|
|
func (s *peerStore) Get(id NodeID) (*peerInfo, error) {
|
|
peer, ok := s.peers[id]
|
|
if !ok {
|
|
return nil, nil
|
|
}
|
|
return &peer, nil
|
|
}
|
|
|
|
// Set stores peer data.
|
|
func (s *peerStore) Set(peer *peerInfo) error {
|
|
if peer == nil {
|
|
return errors.New("peer cannot be nil")
|
|
}
|
|
s.peers[peer.ID] = *peer
|
|
return nil
|
|
}
|
|
|
|
// List retrieves all peers.
|
|
func (s *peerStore) List() ([]*peerInfo, error) {
|
|
peers := []*peerInfo{}
|
|
for _, peer := range s.peers {
|
|
peer := peer
|
|
peers = append(peers, &peer)
|
|
}
|
|
return peers, nil
|
|
}
|
|
|
|
// Ranked returns a list of peers ordered by score (better peers first).
|
|
// Peers with equal scores are returned in an arbitrary order.
|
|
//
|
|
// This is used to determine which peers to connect to and which peers to evict
|
|
// in order to make room for better peers.
|
|
//
|
|
// FIXME: For now, we simply generate the list on every call, but this can get
|
|
// expensive since it's called fairly frequently. We may want to either cache
|
|
// this, or store peers in a data structure that maintains order (e.g. a heap or
|
|
// ordered map).
|
|
func (s *peerStore) Ranked() ([]*peerInfo, error) {
|
|
peers, err := s.List()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
sort.Slice(peers, func(i, j int) bool {
|
|
// FIXME: If necessary, consider precomputing scores before sorting,
|
|
// to reduce the number of Score() calls.
|
|
return peers[i].Score() > peers[j].Score()
|
|
})
|
|
return peers, nil
|
|
}
|
|
|
|
// peerInfo contains peer information stored in a peerStore.
|
|
type peerInfo struct {
|
|
ID NodeID
|
|
AddressInfo []*addressInfo
|
|
Persistent bool
|
|
Height int64
|
|
LastConnected time.Time
|
|
}
|
|
|
|
// AddAddress adds an address to a peer, unless it already exists. It does not
|
|
// validate the address. Returns true if the address was new.
|
|
func (p *peerInfo) AddAddress(address PeerAddress) bool {
|
|
if p.LookupAddressInfo(address) != nil {
|
|
return false
|
|
}
|
|
p.AddressInfo = append(p.AddressInfo, &addressInfo{Address: address})
|
|
return true
|
|
}
|
|
|
|
// LookupAddressInfo returns address info for an address, or nil if unknown.
|
|
func (p *peerInfo) LookupAddressInfo(address PeerAddress) *addressInfo {
|
|
// We just do a linear search for now.
|
|
addressString := address.String()
|
|
for _, info := range p.AddressInfo {
|
|
if info.Address.String() == addressString {
|
|
return info
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Score calculates a score for the peer. Higher-scored peers will be
|
|
// preferred over lower scores.
|
|
func (p *peerInfo) Score() PeerScore {
|
|
var score PeerScore
|
|
if p.Persistent {
|
|
score += PeerScorePersistent
|
|
}
|
|
return score
|
|
}
|
|
|
|
// addressInfo contains information and statistics about an address.
|
|
type addressInfo struct {
|
|
Address PeerAddress
|
|
LastDialSuccess time.Time
|
|
LastDialFailure time.Time
|
|
DialFailures uint32 // since last successful dial
|
|
}
|
|
|
|
// ============================================================================
|
|
// Types and business logic below may be deprecated.
|
|
//
|
|
// TODO: Rename once legacy p2p types are removed.
|
|
// ref: https://github.com/tendermint/tendermint/issues/5670
|
|
// ============================================================================
|
|
|
|
//go:generate mockery --case underscore --name Peer
|
|
|
|
const metricsTickerDuration = 10 * time.Second
|
|
|
|
// Peer is an interface representing a peer connected on a reactor.
|
|
type Peer interface {
|
|
service.Service
|
|
FlushStop()
|
|
|
|
ID() NodeID // peer's cryptographic ID
|
|
RemoteIP() net.IP // remote IP of the connection
|
|
RemoteAddr() net.Addr // remote address of the connection
|
|
|
|
IsOutbound() bool // did we dial the peer
|
|
IsPersistent() bool // do we redial this peer when we disconnect
|
|
|
|
CloseConn() error // close original connection
|
|
|
|
NodeInfo() NodeInfo // peer's info
|
|
Status() tmconn.ConnectionStatus
|
|
SocketAddr() *NetAddress // actual address of the socket
|
|
|
|
Send(byte, []byte) bool
|
|
TrySend(byte, []byte) bool
|
|
|
|
Set(string, interface{})
|
|
Get(string) interface{}
|
|
}
|
|
|
|
//----------------------------------------------------------
|
|
|
|
// peerConn contains the raw connection and its config.
|
|
type peerConn struct {
|
|
outbound bool
|
|
persistent bool
|
|
conn Connection
|
|
ip net.IP // cached RemoteIP()
|
|
}
|
|
|
|
func newPeerConn(outbound, persistent bool, conn Connection) peerConn {
|
|
return peerConn{
|
|
outbound: outbound,
|
|
persistent: persistent,
|
|
conn: conn,
|
|
}
|
|
}
|
|
|
|
// ID only exists for SecretConnection.
|
|
func (pc peerConn) ID() NodeID {
|
|
return NodeIDFromPubKey(pc.conn.PubKey())
|
|
}
|
|
|
|
// Return the IP from the connection RemoteAddr
|
|
func (pc peerConn) RemoteIP() net.IP {
|
|
if pc.ip == nil {
|
|
pc.ip = pc.conn.RemoteEndpoint().IP
|
|
}
|
|
return pc.ip
|
|
}
|
|
|
|
// peer implements Peer.
|
|
//
|
|
// Before using a peer, you will need to perform a handshake on connection.
|
|
type peer struct {
|
|
service.BaseService
|
|
|
|
// raw peerConn and the multiplex connection
|
|
peerConn
|
|
|
|
// peer's node info and the channel it knows about
|
|
// channels = nodeInfo.Channels
|
|
// cached to avoid copying nodeInfo in hasChannel
|
|
nodeInfo NodeInfo
|
|
channels []byte
|
|
reactors map[byte]Reactor
|
|
onPeerError func(Peer, interface{})
|
|
|
|
// User data
|
|
Data *cmap.CMap
|
|
|
|
metrics *Metrics
|
|
metricsTicker *time.Ticker
|
|
}
|
|
|
|
type PeerOption func(*peer)
|
|
|
|
func newPeer(
|
|
pc peerConn,
|
|
reactorsByCh map[byte]Reactor,
|
|
onPeerError func(Peer, interface{}),
|
|
options ...PeerOption,
|
|
) *peer {
|
|
nodeInfo := pc.conn.NodeInfo()
|
|
p := &peer{
|
|
peerConn: pc,
|
|
nodeInfo: nodeInfo,
|
|
channels: nodeInfo.Channels, // TODO
|
|
reactors: reactorsByCh,
|
|
onPeerError: onPeerError,
|
|
Data: cmap.NewCMap(),
|
|
metricsTicker: time.NewTicker(metricsTickerDuration),
|
|
metrics: NopMetrics(),
|
|
}
|
|
|
|
p.BaseService = *service.NewBaseService(nil, "Peer", p)
|
|
for _, option := range options {
|
|
option(p)
|
|
}
|
|
|
|
return p
|
|
}
|
|
|
|
// onError calls the peer error callback.
|
|
func (p *peer) onError(err interface{}) {
|
|
p.onPeerError(p, err)
|
|
}
|
|
|
|
// String representation.
|
|
func (p *peer) String() string {
|
|
if p.outbound {
|
|
return fmt.Sprintf("Peer{%v %v out}", p.conn, p.ID())
|
|
}
|
|
|
|
return fmt.Sprintf("Peer{%v %v in}", p.conn, p.ID())
|
|
}
|
|
|
|
//---------------------------------------------------
|
|
// Implements service.Service
|
|
|
|
// SetLogger implements BaseService.
|
|
func (p *peer) SetLogger(l log.Logger) {
|
|
p.Logger = l
|
|
}
|
|
|
|
// OnStart implements BaseService.
|
|
func (p *peer) OnStart() error {
|
|
if err := p.BaseService.OnStart(); err != nil {
|
|
return err
|
|
}
|
|
|
|
go p.processMessages()
|
|
go p.metricsReporter()
|
|
|
|
return nil
|
|
}
|
|
|
|
// processMessages processes messages received from the connection.
|
|
func (p *peer) processMessages() {
|
|
defer func() {
|
|
if r := recover(); r != nil {
|
|
p.Logger.Error("peer message processing panic", "err", r, "stack", string(debug.Stack()))
|
|
p.onError(fmt.Errorf("panic during peer message processing: %v", r))
|
|
}
|
|
}()
|
|
|
|
for {
|
|
chID, msg, err := p.conn.ReceiveMessage()
|
|
if err != nil {
|
|
p.onError(err)
|
|
return
|
|
}
|
|
reactor, ok := p.reactors[chID]
|
|
if !ok {
|
|
p.onError(fmt.Errorf("unknown channel %v", chID))
|
|
return
|
|
}
|
|
reactor.Receive(chID, p, msg)
|
|
}
|
|
}
|
|
|
|
// FlushStop mimics OnStop but additionally ensures that all successful
|
|
// .Send() calls will get flushed before closing the connection.
|
|
// NOTE: it is not safe to call this method more than once.
|
|
func (p *peer) FlushStop() {
|
|
p.metricsTicker.Stop()
|
|
p.BaseService.OnStop()
|
|
if err := p.conn.FlushClose(); err != nil {
|
|
p.Logger.Debug("error while stopping peer", "err", err)
|
|
}
|
|
}
|
|
|
|
// OnStop implements BaseService.
|
|
func (p *peer) OnStop() {
|
|
p.metricsTicker.Stop()
|
|
p.BaseService.OnStop()
|
|
if err := p.conn.Close(); err != nil {
|
|
p.Logger.Debug("error while stopping peer", "err", err)
|
|
}
|
|
}
|
|
|
|
//---------------------------------------------------
|
|
// Implements Peer
|
|
|
|
// ID returns the peer's ID - the hex encoded hash of its pubkey.
|
|
func (p *peer) ID() NodeID {
|
|
return p.nodeInfo.ID()
|
|
}
|
|
|
|
// IsOutbound returns true if the connection is outbound, false otherwise.
|
|
func (p *peer) IsOutbound() bool {
|
|
return p.peerConn.outbound
|
|
}
|
|
|
|
// IsPersistent returns true if the peer is persitent, false otherwise.
|
|
func (p *peer) IsPersistent() bool {
|
|
return p.peerConn.persistent
|
|
}
|
|
|
|
// NodeInfo returns a copy of the peer's NodeInfo.
|
|
func (p *peer) NodeInfo() NodeInfo {
|
|
return p.nodeInfo
|
|
}
|
|
|
|
// SocketAddr returns the address of the socket.
|
|
// For outbound peers, it's the address dialed (after DNS resolution).
|
|
// For inbound peers, it's the address returned by the underlying connection
|
|
// (not what's reported in the peer's NodeInfo).
|
|
func (p *peer) SocketAddr() *NetAddress {
|
|
return p.peerConn.conn.RemoteEndpoint().NetAddress()
|
|
}
|
|
|
|
// Status returns the peer's ConnectionStatus.
|
|
func (p *peer) Status() tmconn.ConnectionStatus {
|
|
return p.conn.Status()
|
|
}
|
|
|
|
// Send msg bytes to the channel identified by chID byte. Returns false if the
|
|
// send queue is full after timeout, specified by MConnection.
|
|
func (p *peer) Send(chID byte, msgBytes []byte) bool {
|
|
if !p.IsRunning() {
|
|
// see Switch#Broadcast, where we fetch the list of peers and loop over
|
|
// them - while we're looping, one peer may be removed and stopped.
|
|
return false
|
|
} else if !p.hasChannel(chID) {
|
|
return false
|
|
}
|
|
res, err := p.conn.SendMessage(chID, msgBytes)
|
|
if err == io.EOF {
|
|
return false
|
|
} else if err != nil {
|
|
p.onError(err)
|
|
return false
|
|
}
|
|
if res {
|
|
labels := []string{
|
|
"peer_id", string(p.ID()),
|
|
"chID", fmt.Sprintf("%#x", chID),
|
|
}
|
|
p.metrics.PeerSendBytesTotal.With(labels...).Add(float64(len(msgBytes)))
|
|
}
|
|
return res
|
|
}
|
|
|
|
// TrySend msg bytes to the channel identified by chID byte. Immediately returns
|
|
// false if the send queue is full.
|
|
func (p *peer) TrySend(chID byte, msgBytes []byte) bool {
|
|
if !p.IsRunning() {
|
|
return false
|
|
} else if !p.hasChannel(chID) {
|
|
return false
|
|
}
|
|
res, err := p.conn.TrySendMessage(chID, msgBytes)
|
|
if err == io.EOF {
|
|
return false
|
|
} else if err != nil {
|
|
p.onError(err)
|
|
return false
|
|
}
|
|
if res {
|
|
labels := []string{
|
|
"peer_id", string(p.ID()),
|
|
"chID", fmt.Sprintf("%#x", chID),
|
|
}
|
|
p.metrics.PeerSendBytesTotal.With(labels...).Add(float64(len(msgBytes)))
|
|
}
|
|
return res
|
|
}
|
|
|
|
// Get the data for a given key.
|
|
func (p *peer) Get(key string) interface{} {
|
|
return p.Data.Get(key)
|
|
}
|
|
|
|
// Set sets the data for the given key.
|
|
func (p *peer) Set(key string, data interface{}) {
|
|
p.Data.Set(key, data)
|
|
}
|
|
|
|
// hasChannel returns true if the peer reported
|
|
// knowing about the given chID.
|
|
func (p *peer) hasChannel(chID byte) bool {
|
|
for _, ch := range p.channels {
|
|
if ch == chID {
|
|
return true
|
|
}
|
|
}
|
|
// NOTE: probably will want to remove this
|
|
// but could be helpful while the feature is new
|
|
p.Logger.Debug(
|
|
"Unknown channel for peer",
|
|
"channel",
|
|
chID,
|
|
"channels",
|
|
p.channels,
|
|
)
|
|
return false
|
|
}
|
|
|
|
// CloseConn closes original connection. Used for cleaning up in cases where the peer had not been started at all.
|
|
func (p *peer) CloseConn() error {
|
|
return p.peerConn.conn.Close()
|
|
}
|
|
|
|
//---------------------------------------------------
|
|
// methods only used for testing
|
|
// TODO: can we remove these?
|
|
|
|
// CloseConn closes the underlying connection
|
|
func (pc *peerConn) CloseConn() {
|
|
pc.conn.Close()
|
|
}
|
|
|
|
// RemoteAddr returns peer's remote network address.
|
|
func (p *peer) RemoteAddr() net.Addr {
|
|
endpoint := p.conn.RemoteEndpoint()
|
|
return &net.TCPAddr{
|
|
IP: endpoint.IP,
|
|
Port: int(endpoint.Port),
|
|
}
|
|
}
|
|
|
|
//---------------------------------------------------
|
|
|
|
func PeerMetrics(metrics *Metrics) PeerOption {
|
|
return func(p *peer) {
|
|
p.metrics = metrics
|
|
}
|
|
}
|
|
|
|
func (p *peer) metricsReporter() {
|
|
for {
|
|
select {
|
|
case <-p.metricsTicker.C:
|
|
status := p.conn.Status()
|
|
var sendQueueSize float64
|
|
for _, chStatus := range status.Channels {
|
|
sendQueueSize += float64(chStatus.SendQueueSize)
|
|
}
|
|
|
|
p.metrics.PeerPendingSendBytes.With("peer_id", string(p.ID())).Set(sendQueueSize)
|
|
case <-p.Quit():
|
|
return
|
|
}
|
|
}
|
|
}
|