package p2p import ( "context" "errors" "fmt" "io" "math" "math/rand" "net" "net/url" "runtime/debug" "sort" "strconv" "sync" "time" "github.com/tendermint/tendermint/libs/cmap" "github.com/tendermint/tendermint/libs/log" "github.com/tendermint/tendermint/libs/service" tmconn "github.com/tendermint/tendermint/p2p/conn" ) // PeerAddress is a peer address URL. type PeerAddress struct { *url.URL } // ParsePeerAddress parses a peer address URL into a PeerAddress. func ParsePeerAddress(address string) (PeerAddress, error) { u, err := url.Parse(address) if err != nil || u == nil { return PeerAddress{}, fmt.Errorf("unable to parse peer address %q: %w", address, err) } if u.Scheme == "" { u.Scheme = string(defaultProtocol) } pa := PeerAddress{URL: u} if err = pa.Validate(); err != nil { return PeerAddress{}, err } return pa, nil } // NodeID returns the address node ID. func (a PeerAddress) NodeID() NodeID { return NodeID(a.User.Username()) } // Resolve resolves a PeerAddress into a set of Endpoints, by expanding // out a DNS name in Host to its IP addresses. Field mapping: // // Scheme → Endpoint.Protocol // Host → Endpoint.IP // User → Endpoint.PeerID // Port → Endpoint.Port // Path+Query+Fragment,Opaque → Endpoint.Path // func (a PeerAddress) Resolve(ctx context.Context) ([]Endpoint, error) { ips, err := net.DefaultResolver.LookupIP(ctx, "ip", a.Host) if err != nil { return nil, err } port, err := a.parsePort() if err != nil { return nil, err } path := a.Path if a.RawPath != "" { path = a.RawPath } if a.Opaque != "" { // used for e.g. "about:blank" style URLs path = a.Opaque } if a.RawQuery != "" { path += "?" + a.RawQuery } if a.RawFragment != "" { path += "#" + a.RawFragment } endpoints := make([]Endpoint, len(ips)) for i, ip := range ips { endpoints[i] = Endpoint{ PeerID: a.NodeID(), Protocol: Protocol(a.Scheme), IP: ip, Port: port, Path: path, } } return endpoints, nil } // Validates validates a PeerAddress. func (a PeerAddress) Validate() error { if a.Scheme == "" { return errors.New("no protocol") } if id := a.User.Username(); id == "" { return errors.New("no peer ID") } else if err := NodeID(id).Validate(); err != nil { return fmt.Errorf("invalid peer ID: %w", err) } if a.Hostname() == "" && len(a.Query()) == 0 && a.Opaque == "" { return errors.New("no host or path given") } if port, err := a.parsePort(); err != nil { return err } else if port > 0 && a.Hostname() == "" { return errors.New("cannot specify port without host") } return nil } // parsePort returns the port number as a uint16. func (a PeerAddress) parsePort() (uint16, error) { if portString := a.Port(); portString != "" { port64, err := strconv.ParseUint(portString, 10, 16) if err != nil { return 0, fmt.Errorf("invalid port %q: %w", portString, err) } return uint16(port64), nil } return 0, nil } // PeerStatus specifies peer statuses. type PeerStatus string const ( PeerStatusNew = PeerStatus("new") // New peer which we haven't tried to contact yet. PeerStatusUp = PeerStatus("up") // Peer which we have an active connection to. PeerStatusDown = PeerStatus("down") // Peer which we're temporarily disconnected from. PeerStatusRemoved = PeerStatus("removed") // Peer which has been removed. PeerStatusBanned = PeerStatus("banned") // Peer which is banned for misbehavior. ) // PeerError is a peer error reported by a reactor via the Error channel. The // severity may cause the peer to be disconnected or banned depending on policy. type PeerError struct { PeerID NodeID Err error Severity PeerErrorSeverity } // PeerErrorSeverity determines the severity of a peer error. type PeerErrorSeverity string const ( PeerErrorSeverityLow PeerErrorSeverity = "low" // Mostly ignored. PeerErrorSeverityHigh PeerErrorSeverity = "high" // May disconnect. PeerErrorSeverityCritical PeerErrorSeverity = "critical" // Ban. ) // PeerUpdatesCh defines a wrapper around a PeerUpdate go channel that allows // a reactor to listen for peer updates and safely close it when stopping. type PeerUpdatesCh struct { closeOnce sync.Once // updatesCh defines the go channel in which the router sends peer updates to // reactors. Each reactor will have its own PeerUpdatesCh to listen for updates // from. updatesCh chan PeerUpdate // doneCh is used to signal that a PeerUpdatesCh is closed. It is the // reactor's responsibility to invoke Close. doneCh chan struct{} } // NewPeerUpdates returns a reference to a new PeerUpdatesCh. func NewPeerUpdates(updatesCh chan PeerUpdate) *PeerUpdatesCh { return &PeerUpdatesCh{ updatesCh: updatesCh, doneCh: make(chan struct{}), } } // Updates returns a read-only go channel where a consuming reactor can listen // for peer updates sent from the router. func (puc *PeerUpdatesCh) Updates() <-chan PeerUpdate { return puc.updatesCh } // Close closes the PeerUpdatesCh channel. It should only be closed by the respective // reactor when stopping and ensure nothing is listening for updates. // // NOTE: After a PeerUpdatesCh is closed, the router may safely assume it can no // longer send on the internal updatesCh, however it should NEVER explicitly close // it as that could result in panics by sending on a closed channel. func (puc *PeerUpdatesCh) Close() { puc.closeOnce.Do(func() { close(puc.doneCh) }) } // Done returns a read-only version of the PeerUpdatesCh's internal doneCh go // channel that should be used by a router to signal when it is safe to explicitly // not send any peer updates. func (puc *PeerUpdatesCh) Done() <-chan struct{} { return puc.doneCh } // PeerUpdate is a peer status update for reactors. type PeerUpdate struct { PeerID NodeID Status PeerStatus } // PeerScore is a numeric score assigned to a peer (higher is better). type PeerScore uint16 const ( // PeerScorePersistent is added for persistent peers. PeerScorePersistent PeerScore = 100 ) // PeerManager manages peer lifecycle information, using a peerStore for // underlying storage. Its primary purpose is to determine which peers to // connect to next, make sure a peer only has a single active connection (either // inbound or outbound), and evict peers to make room for higher-scored peers. // It does not manage actual connections (this is handled by the Router), // only the peer lifecycle state. // // For an outbound connection, the flow is as follows: // - DialNext: returns a peer address to dial, marking the peer as dialing. // - DialFailed: reports a dial failure, unmarking the peer as dialing. // - Dialed: successfully dialed, unmarking as dialing and marking as connected // (or erroring if already connected). // - Ready: routing is up, broadcasts a PeerStatusUp peer update to subscribers. // - Disconnected: peer disconnects, unmarking as connected and broadcasts a // PeerStatusDown peer update. // // For an inbound connection, the flow is as follows: // - Accepted: successfully accepted connection, marking as connected (or erroring // if already connected). // - Ready: routing is up, broadcasts a PeerStatusUp peer update to subscribers. // - Disconnected: peer disconnects, unmarking as connected and broadcasts a // PeerStatusDown peer update. // // If we need to evict a peer, typically because we have connected to additional // higher-scored peers and need to shed lower-scored ones, the flow is as follows: // - EvictNext: returns a peer ID to evict, marking peer as evicting. // - Disconnected: peer was disconnected, unmarking as connected and evicting, // and broadcasts a PeerStatusDown peer update. // // We track dialing and connected states independently. This allows us to accept // an inbound connection from a peer while the router is also dialing an // outbound connection to that same peer, which will cause the dialer to // eventually error (when attempting to mark the peer as connected). This also // avoids race conditions where multiple goroutines may end up dialing a peer if // an incoming connection was briefly accepted and disconnected while we were // also dialing. type PeerManager struct { options PeerManagerOptions mtx sync.Mutex store *peerStore dialing map[NodeID]bool connected map[NodeID]bool evicting map[NodeID]bool subscriptions map[*PeerUpdatesCh]*PeerUpdatesCh // keyed by struct identity (address) } // PeerManagerOptions specifies options for a PeerManager. type PeerManagerOptions struct { // PersistentPeers are peers that we want to maintain persistent connections // to. These will be scored higher than other peers, and if // MaxConnectedUpgrade is non-zero any lower-scored peers will be evicted if // necessary to make room for these. PersistentPeers []NodeID // MaxConnected is the maximum number of connected peers (inbound and // outbound). 0 means no limit. MaxConnected uint16 // MaxConnectedUpgrade is the maximum number of additional connections to // use for probing any better-scored peers to upgrade to when all connection // slots are full. 0 disables peer upgrading. // // For example, if we are already connected to MaxConnected peers, but we // know or learn about better-scored peers (e.g. configured persistent // peers) that we are not connected too, then we can probe these peers by // using up to MaxConnectedUpgrade connections, and once connected evict the // lowest-scored connected peers. This also works for inbound connections, // i.e. if a higher-scored peer attempts to connect to us, we can accept // the connection and evict a lower-scored peer. MaxConnectedUpgrade uint16 // MinRetryTime is the minimum time to wait between retries. Retry times // double for each retry, up to MaxRetryTime. 0 disables retries. MinRetryTime time.Duration // MaxRetryTime is the maximum time to wait between retries. 0 means // no maximum, in which case the retry time will keep doubling. MaxRetryTime time.Duration // MaxRetryTimePersistent is the maximum time to wait between retries for // peers listed in PersistentPeers. 0 uses MaxRetryTime instead. MaxRetryTimePersistent time.Duration // RetryTimeJitter is the upper bound of a random interval added to // retry times, to avoid thundering herds. 0 disables jutter. RetryTimeJitter time.Duration } // isPersistent is a convenience function that checks if the given peer ID // is contained in PersistentPeers. It just uses a linear search, since // PersistentPeers is expected to be small. func (o PeerManagerOptions) isPersistent(id NodeID) bool { for _, p := range o.PersistentPeers { if id == p { return true } } return false } // NewPeerManager creates a new peer manager. func NewPeerManager(options PeerManagerOptions) *PeerManager { return &PeerManager{ options: options, // FIXME: Once the store persists data, we need to update existing // peers in the store with any new information, e.g. changes to // PersistentPeers configuration. store: newPeerStore(), dialing: map[NodeID]bool{}, connected: map[NodeID]bool{}, evicting: map[NodeID]bool{}, subscriptions: map[*PeerUpdatesCh]*PeerUpdatesCh{}, } } // Add adds a peer to the manager, given as an address. If the peer already // exists, the address is added to it. func (m *PeerManager) Add(address PeerAddress) error { if err := address.Validate(); err != nil { return err } m.mtx.Lock() defer m.mtx.Unlock() peer, err := m.store.Get(address.NodeID()) if err != nil { return err } if peer == nil { peer = &peerInfo{ ID: address.NodeID(), Persistent: m.options.isPersistent(address.NodeID()), } } peer.AddAddress(address) return m.store.Set(peer) } // Subscribe subscribes to peer updates. The caller must consume the peer // updates in a timely fashion and close the subscription when done, since // delivery is guaranteed and will block peer connection/disconnection // otherwise. func (m *PeerManager) Subscribe() *PeerUpdatesCh { // FIXME: We may want to use a size 1 buffer here. When the router // broadcasts a peer update it has to loop over all of the // subscriptions, and we want to avoid blocking and waiting for a // context switch before continuing to the next subscription. This also // prevents tail latencies from compounding across updates. We also want // to make sure the subscribers are reasonably in sync, so it should be // kept at 1. However, this should be benchmarked first. peerUpdates := NewPeerUpdates(make(chan PeerUpdate)) m.mtx.Lock() m.subscriptions[peerUpdates] = peerUpdates m.mtx.Unlock() go func() { <-peerUpdates.Done() m.mtx.Lock() delete(m.subscriptions, peerUpdates) m.mtx.Unlock() }() return peerUpdates } // broadcast broadcasts a peer update to all subscriptions. The caller must // already hold the mutex lock. This means the mutex is held for the duration // of the broadcast, which we want to make sure all subscriptions receive all // updates in the same order. // // FIXME: Consider using more fine-grained mutexes here, and/or a channel to // enforce ordering of updates. func (m *PeerManager) broadcast(peerUpdate PeerUpdate) { for _, sub := range m.subscriptions { select { case sub.updatesCh <- peerUpdate: case <-sub.doneCh: } } } // DialNext finds an appropriate peer address to dial, and marks it as dialing. // The peer will not be returned again until Dialed() or DialFailed() is called // for the peer and it is no longer connected. Returns an empty ID if no // appropriate peers are available, or if all connection slots are full. // // We allow dialing MaxConnected+MaxConnectedUpgrade peers. Including // MaxConnectedUpgrade allows us to dial additional peers beyond MaxConnected if // they have a higher score than any other connected or dialing peer. If we are // successful in dialing, and thus have more than MaxConnected connected peers, // the lower-scored peer will be evicted via EvictNext(). func (m *PeerManager) DialNext() (NodeID, PeerAddress, error) { m.mtx.Lock() defer m.mtx.Unlock() if m.options.MaxConnected > 0 && len(m.connected)+len(m.dialing) >= int(m.options.MaxConnected)+int(m.options.MaxConnectedUpgrade) { return "", PeerAddress{}, nil } ranked, err := m.store.Ranked() if err != nil { return "", PeerAddress{}, err } for _, peer := range ranked { if m.dialing[peer.ID] || m.connected[peer.ID] { continue } for _, addressInfo := range peer.AddressInfo { if time.Since(addressInfo.LastDialFailure) < m.retryDelay(peer, addressInfo.DialFailures) { continue } // At this point we have an eligible address to dial. If we're full // but have peer upgrade capacity (as checked above), we need to // make sure there exists an evictable peer of a lower score that we // can replace. If so, we can go ahead and dial this peer, and // EvictNext() will evict a lower-scored one later. // // If we don't find one, there is no point in trying additional // peers, since they will all have the same or lower score than this // peer (since they're ordered by score via peerStore.Ranked). // // FIXME: There is a race condition here where, if there exists a // single lower-scored peer, we may end up dialing multiple // higher-scored new peers that all expect the same lower-scored // peer to be evicted, causing us to take on too many peers. We may // need to reserve the eviction for this specific peer such that // others can't claim it. if m.options.MaxConnected > 0 && len(m.connected) >= int(m.options.MaxConnected) && !m.peerIsUpgrade(peer, ranked) { return "", PeerAddress{}, nil } m.dialing[peer.ID] = true return peer.ID, addressInfo.Address, nil } } return "", PeerAddress{}, nil } // retryDelay calculates a dial retry delay using exponential backoff, based on // retry settings in PeerManagerOptions. If MinRetryTime is 0, this returns // MaxInt64 (i.e. an infinite retry delay, effectively disabling retries). func (m *PeerManager) retryDelay(peer *peerInfo, failures uint32) time.Duration { if failures == 0 { return 0 } if m.options.MinRetryTime == 0 { return time.Duration(math.MaxInt64) } maxDelay := m.options.MaxRetryTime if peer.Persistent && m.options.MaxRetryTimePersistent > 0 { maxDelay = m.options.MaxRetryTimePersistent } delay := m.options.MinRetryTime * time.Duration(math.Pow(2, float64(failures))) if maxDelay > 0 && delay > maxDelay { delay = maxDelay } // FIXME: This should use a PeerManager-scoped RNG. delay += time.Duration(rand.Int63n(int64(m.options.RetryTimeJitter))) // nolint:gosec return delay } // DialFailed reports a failed dial attempt. This will make the peer available // for dialing again when appropriate. // // FIXME: This should probably delete or mark bad addresses/peers after some time. func (m *PeerManager) DialFailed(peerID NodeID, address PeerAddress) error { m.mtx.Lock() defer m.mtx.Unlock() delete(m.dialing, peerID) peer, err := m.store.Get(peerID) if err != nil || peer == nil { // Peer may have been removed while dialing, ignore. return err } if addressInfo := peer.LookupAddressInfo(address); addressInfo != nil { addressInfo.LastDialFailure = time.Now().UTC() addressInfo.DialFailures++ return m.store.Set(peer) } return nil } // Dialed marks a peer as successfully dialed. Any further incoming connections // will be rejected, and once disconnected the peer may be dialed again. func (m *PeerManager) Dialed(peerID NodeID, address PeerAddress) error { m.mtx.Lock() defer m.mtx.Unlock() delete(m.dialing, peerID) if m.connected[peerID] { return fmt.Errorf("peer %v is already connected", peerID) } if m.options.MaxConnected > 0 && len(m.connected) >= int(m.options.MaxConnected)+int(m.options.MaxConnectedUpgrade) { return fmt.Errorf("already connected to maximum number of peers") } peer, err := m.store.Get(peerID) if err != nil { return err } else if peer == nil { return fmt.Errorf("peer %q was removed while dialing", peerID) } m.connected[peerID] = true now := time.Now().UTC() peer.LastConnected = now if addressInfo := peer.LookupAddressInfo(address); addressInfo != nil { addressInfo.DialFailures = 0 addressInfo.LastDialSuccess = now } return m.store.Set(peer) } // Accepted marks an incoming peer connection successfully accepted. If the peer // is already connected or we don't allow additional connections then this will // return an error. // // If MaxConnectedUpgrade is non-zero, the accepted peer is better-scored than any // other connected peer, and the number of connections does not exceed // MaxConnected + MaxConnectedUpgrade then we accept the connection and rely on // EvictNext() to evict lower-scored peers. // // NOTE: We can't take an address here, since e.g. TCP uses a different port // number for outbound traffic than inbound traffic, so the peer's endpoint // wouldn't necessarily be an appropriate address to dial. func (m *PeerManager) Accepted(peerID NodeID) error { m.mtx.Lock() defer m.mtx.Unlock() if m.connected[peerID] { return fmt.Errorf("peer %q is already connected", peerID) } if m.options.MaxConnected > 0 && len(m.connected) >= int(m.options.MaxConnected)+int(m.options.MaxConnectedUpgrade) { return fmt.Errorf("already connected to maximum number of peers") } peer, err := m.store.Get(peerID) if err != nil { return err } if peer == nil { peer = &peerInfo{ ID: peerID, Persistent: m.options.isPersistent(peerID), } } // If we're already full (i.e. at MaxConnected), but we allow upgrades (and we // know from the check above that we have upgrade capacity), then we can look // for a lower-scored evictable peer, and if found we can accept this connection // anyway and let EvictNext() evict the lower-scored peer for us. // // FIXME: There is a race condition here where, if there exists a single // lower-scored peer, we may end up accepting multiple higher-scored new // peers that all expect the same lower-scored peer to be evicted, causing // us to take on too many peers. We may need to reserve the eviction for // this specific peer such that others can't claim it. if m.options.MaxConnected > 0 && len(m.connected) >= int(m.options.MaxConnected) { ranked, err := m.store.Ranked() if err != nil { return err } if !m.peerIsUpgrade(peer, ranked) { return fmt.Errorf("already connected to maximum number of peers") } } m.connected[peerID] = true peer.LastConnected = time.Now().UTC() return m.store.Set(peer) } // Ready marks a peer as ready, broadcasting status updates to subscribers. The // peer must already be marked as connected. This is separate from Dialed() and // Accepted() to allow the router to set up its internal queues before reactors // start sending messages. func (m *PeerManager) Ready(peerID NodeID) { m.mtx.Lock() defer m.mtx.Unlock() connected := m.connected[peerID] if connected { m.broadcast(PeerUpdate{ PeerID: peerID, Status: PeerStatusUp, }) } } // Disconnected unmarks a peer as connected, allowing new connections to be // established. func (m *PeerManager) Disconnected(peerID NodeID) error { m.mtx.Lock() defer m.mtx.Unlock() delete(m.connected, peerID) delete(m.evicting, peerID) m.broadcast(PeerUpdate{ PeerID: peerID, Status: PeerStatusDown, }) return nil } // EvictNext returns the next peer to evict (i.e. disconnect), or an empty ID if // no peers should be evicted. The evicted peer will be a lowest-scored peer // that is currently connected and not already being evicted. func (m *PeerManager) EvictNext() (NodeID, error) { m.mtx.Lock() defer m.mtx.Unlock() if m.options.MaxConnected == 0 || len(m.connected)-len(m.evicting) <= int(m.options.MaxConnected) { return "", nil } ranked, err := m.store.Ranked() if err != nil { return "", err } for i := len(ranked) - 1; i >= 0; i-- { peer := ranked[i] if m.connected[peer.ID] && !m.evicting[peer.ID] { m.evicting[peer.ID] = true return peer.ID, nil } } return "", nil } // peerIsUpgrade checks whether connecting to a given peer would be an // upgrade, i.e. that there exists a lower-scored peer that is already // connected and not scheduled for eviction, such that connecting to // the peer would cause a lower-scored peer to be evicted if we're full. func (m *PeerManager) peerIsUpgrade(peer *peerInfo, ranked []*peerInfo) bool { for i := len(ranked) - 1; i >= 0; i-- { candidate := ranked[i] if candidate.Score() >= peer.Score() { return false } if m.connected[candidate.ID] && !m.evicting[candidate.ID] { return true } } return false } // GetHeight returns a peer's height, as reported via SetHeight. If the peer // or height is unknown, this returns 0. // // FIXME: This is a temporary workaround for the peer state stored via the // legacy Peer.Set() and Peer.Get() APIs, used to share height state between the // consensus and mempool reactors. These dependencies should be removed from the // reactors, and instead query this information independently via new P2P // protocol additions. func (m *PeerManager) GetHeight(peerID NodeID) (int64, error) { m.mtx.Lock() defer m.mtx.Unlock() peer, err := m.store.Get(peerID) if err != nil || peer == nil { return 0, err } return peer.Height, nil } // SetHeight stores a peer's height, making it available via GetHeight. If the // peer is unknown, it is created. // // FIXME: This is a temporary workaround for the peer state stored via the // legacy Peer.Set() and Peer.Get() APIs, used to share height state between the // consensus and mempool reactors. These dependencies should be removed from the // reactors, and instead query this information independently via new P2P // protocol additions. func (m *PeerManager) SetHeight(peerID NodeID, height int64) error { m.mtx.Lock() defer m.mtx.Unlock() peer, err := m.store.Get(peerID) if err != nil { return err } if peer == nil { peer = &peerInfo{ ID: peerID, Persistent: m.options.isPersistent(peerID), } } peer.Height = height return m.store.Set(peer) } // peerStore stores information about peers. It is currently a bare-bones // in-memory store, and will be fleshed out later. // // peerStore is not thread-safe, since it assumes it is only used by PeerManager // which handles concurrency control. This allows the manager to execute multiple // operations atomically while it holds the mutex. type peerStore struct { peers map[NodeID]peerInfo } // newPeerStore creates a new peer store. func newPeerStore() *peerStore { return &peerStore{ peers: map[NodeID]peerInfo{}, } } // Get fetches a peer, returning nil if not found. func (s *peerStore) Get(id NodeID) (*peerInfo, error) { peer, ok := s.peers[id] if !ok { return nil, nil } return &peer, nil } // Set stores peer data. func (s *peerStore) Set(peer *peerInfo) error { if peer == nil { return errors.New("peer cannot be nil") } s.peers[peer.ID] = *peer return nil } // List retrieves all peers. func (s *peerStore) List() ([]*peerInfo, error) { peers := []*peerInfo{} for _, peer := range s.peers { peer := peer peers = append(peers, &peer) } return peers, nil } // Ranked returns a list of peers ordered by score (better peers first). // Peers with equal scores are returned in an arbitrary order. // // This is used to determine which peers to connect to and which peers to evict // in order to make room for better peers. // // FIXME: For now, we simply generate the list on every call, but this can get // expensive since it's called fairly frequently. We may want to either cache // this, or store peers in a data structure that maintains order (e.g. a heap or // ordered map). func (s *peerStore) Ranked() ([]*peerInfo, error) { peers, err := s.List() if err != nil { return nil, err } sort.Slice(peers, func(i, j int) bool { // FIXME: If necessary, consider precomputing scores before sorting, // to reduce the number of Score() calls. return peers[i].Score() > peers[j].Score() }) return peers, nil } // peerInfo contains peer information stored in a peerStore. type peerInfo struct { ID NodeID AddressInfo []*addressInfo Persistent bool Height int64 LastConnected time.Time } // AddAddress adds an address to a peer, unless it already exists. It does not // validate the address. Returns true if the address was new. func (p *peerInfo) AddAddress(address PeerAddress) bool { if p.LookupAddressInfo(address) != nil { return false } p.AddressInfo = append(p.AddressInfo, &addressInfo{Address: address}) return true } // LookupAddressInfo returns address info for an address, or nil if unknown. func (p *peerInfo) LookupAddressInfo(address PeerAddress) *addressInfo { // We just do a linear search for now. addressString := address.String() for _, info := range p.AddressInfo { if info.Address.String() == addressString { return info } } return nil } // Score calculates a score for the peer. Higher-scored peers will be // preferred over lower scores. func (p *peerInfo) Score() PeerScore { var score PeerScore if p.Persistent { score += PeerScorePersistent } return score } // addressInfo contains information and statistics about an address. type addressInfo struct { Address PeerAddress LastDialSuccess time.Time LastDialFailure time.Time DialFailures uint32 // since last successful dial } // ============================================================================ // Types and business logic below may be deprecated. // // TODO: Rename once legacy p2p types are removed. // ref: https://github.com/tendermint/tendermint/issues/5670 // ============================================================================ //go:generate mockery --case underscore --name Peer const metricsTickerDuration = 10 * time.Second // Peer is an interface representing a peer connected on a reactor. type Peer interface { service.Service FlushStop() ID() NodeID // peer's cryptographic ID RemoteIP() net.IP // remote IP of the connection RemoteAddr() net.Addr // remote address of the connection IsOutbound() bool // did we dial the peer IsPersistent() bool // do we redial this peer when we disconnect CloseConn() error // close original connection NodeInfo() NodeInfo // peer's info Status() tmconn.ConnectionStatus SocketAddr() *NetAddress // actual address of the socket Send(byte, []byte) bool TrySend(byte, []byte) bool Set(string, interface{}) Get(string) interface{} } //---------------------------------------------------------- // peerConn contains the raw connection and its config. type peerConn struct { outbound bool persistent bool conn Connection ip net.IP // cached RemoteIP() } func newPeerConn(outbound, persistent bool, conn Connection) peerConn { return peerConn{ outbound: outbound, persistent: persistent, conn: conn, } } // ID only exists for SecretConnection. func (pc peerConn) ID() NodeID { return NodeIDFromPubKey(pc.conn.PubKey()) } // Return the IP from the connection RemoteAddr func (pc peerConn) RemoteIP() net.IP { if pc.ip == nil { pc.ip = pc.conn.RemoteEndpoint().IP } return pc.ip } // peer implements Peer. // // Before using a peer, you will need to perform a handshake on connection. type peer struct { service.BaseService // raw peerConn and the multiplex connection peerConn // peer's node info and the channel it knows about // channels = nodeInfo.Channels // cached to avoid copying nodeInfo in hasChannel nodeInfo NodeInfo channels []byte reactors map[byte]Reactor onPeerError func(Peer, interface{}) // User data Data *cmap.CMap metrics *Metrics metricsTicker *time.Ticker } type PeerOption func(*peer) func newPeer( pc peerConn, reactorsByCh map[byte]Reactor, onPeerError func(Peer, interface{}), options ...PeerOption, ) *peer { nodeInfo := pc.conn.NodeInfo() p := &peer{ peerConn: pc, nodeInfo: nodeInfo, channels: nodeInfo.Channels, // TODO reactors: reactorsByCh, onPeerError: onPeerError, Data: cmap.NewCMap(), metricsTicker: time.NewTicker(metricsTickerDuration), metrics: NopMetrics(), } p.BaseService = *service.NewBaseService(nil, "Peer", p) for _, option := range options { option(p) } return p } // onError calls the peer error callback. func (p *peer) onError(err interface{}) { p.onPeerError(p, err) } // String representation. func (p *peer) String() string { if p.outbound { return fmt.Sprintf("Peer{%v %v out}", p.conn, p.ID()) } return fmt.Sprintf("Peer{%v %v in}", p.conn, p.ID()) } //--------------------------------------------------- // Implements service.Service // SetLogger implements BaseService. func (p *peer) SetLogger(l log.Logger) { p.Logger = l } // OnStart implements BaseService. func (p *peer) OnStart() error { if err := p.BaseService.OnStart(); err != nil { return err } go p.processMessages() go p.metricsReporter() return nil } // processMessages processes messages received from the connection. func (p *peer) processMessages() { defer func() { if r := recover(); r != nil { p.Logger.Error("peer message processing panic", "err", r, "stack", string(debug.Stack())) p.onError(fmt.Errorf("panic during peer message processing: %v", r)) } }() for { chID, msg, err := p.conn.ReceiveMessage() if err != nil { p.onError(err) return } reactor, ok := p.reactors[chID] if !ok { p.onError(fmt.Errorf("unknown channel %v", chID)) return } reactor.Receive(chID, p, msg) } } // FlushStop mimics OnStop but additionally ensures that all successful // .Send() calls will get flushed before closing the connection. // NOTE: it is not safe to call this method more than once. func (p *peer) FlushStop() { p.metricsTicker.Stop() p.BaseService.OnStop() if err := p.conn.FlushClose(); err != nil { p.Logger.Debug("error while stopping peer", "err", err) } } // OnStop implements BaseService. func (p *peer) OnStop() { p.metricsTicker.Stop() p.BaseService.OnStop() if err := p.conn.Close(); err != nil { p.Logger.Debug("error while stopping peer", "err", err) } } //--------------------------------------------------- // Implements Peer // ID returns the peer's ID - the hex encoded hash of its pubkey. func (p *peer) ID() NodeID { return p.nodeInfo.ID() } // IsOutbound returns true if the connection is outbound, false otherwise. func (p *peer) IsOutbound() bool { return p.peerConn.outbound } // IsPersistent returns true if the peer is persitent, false otherwise. func (p *peer) IsPersistent() bool { return p.peerConn.persistent } // NodeInfo returns a copy of the peer's NodeInfo. func (p *peer) NodeInfo() NodeInfo { return p.nodeInfo } // SocketAddr returns the address of the socket. // For outbound peers, it's the address dialed (after DNS resolution). // For inbound peers, it's the address returned by the underlying connection // (not what's reported in the peer's NodeInfo). func (p *peer) SocketAddr() *NetAddress { return p.peerConn.conn.RemoteEndpoint().NetAddress() } // Status returns the peer's ConnectionStatus. func (p *peer) Status() tmconn.ConnectionStatus { return p.conn.Status() } // Send msg bytes to the channel identified by chID byte. Returns false if the // send queue is full after timeout, specified by MConnection. func (p *peer) Send(chID byte, msgBytes []byte) bool { if !p.IsRunning() { // see Switch#Broadcast, where we fetch the list of peers and loop over // them - while we're looping, one peer may be removed and stopped. return false } else if !p.hasChannel(chID) { return false } res, err := p.conn.SendMessage(chID, msgBytes) if err == io.EOF { return false } else if err != nil { p.onError(err) return false } if res { labels := []string{ "peer_id", string(p.ID()), "chID", fmt.Sprintf("%#x", chID), } p.metrics.PeerSendBytesTotal.With(labels...).Add(float64(len(msgBytes))) } return res } // TrySend msg bytes to the channel identified by chID byte. Immediately returns // false if the send queue is full. func (p *peer) TrySend(chID byte, msgBytes []byte) bool { if !p.IsRunning() { return false } else if !p.hasChannel(chID) { return false } res, err := p.conn.TrySendMessage(chID, msgBytes) if err == io.EOF { return false } else if err != nil { p.onError(err) return false } if res { labels := []string{ "peer_id", string(p.ID()), "chID", fmt.Sprintf("%#x", chID), } p.metrics.PeerSendBytesTotal.With(labels...).Add(float64(len(msgBytes))) } return res } // Get the data for a given key. func (p *peer) Get(key string) interface{} { return p.Data.Get(key) } // Set sets the data for the given key. func (p *peer) Set(key string, data interface{}) { p.Data.Set(key, data) } // hasChannel returns true if the peer reported // knowing about the given chID. func (p *peer) hasChannel(chID byte) bool { for _, ch := range p.channels { if ch == chID { return true } } // NOTE: probably will want to remove this // but could be helpful while the feature is new p.Logger.Debug( "Unknown channel for peer", "channel", chID, "channels", p.channels, ) return false } // CloseConn closes original connection. Used for cleaning up in cases where the peer had not been started at all. func (p *peer) CloseConn() error { return p.peerConn.conn.Close() } //--------------------------------------------------- // methods only used for testing // TODO: can we remove these? // CloseConn closes the underlying connection func (pc *peerConn) CloseConn() { pc.conn.Close() } // RemoteAddr returns peer's remote network address. func (p *peer) RemoteAddr() net.Addr { endpoint := p.conn.RemoteEndpoint() return &net.TCPAddr{ IP: endpoint.IP, Port: int(endpoint.Port), } } //--------------------------------------------------- func PeerMetrics(metrics *Metrics) PeerOption { return func(p *peer) { p.metrics = metrics } } func (p *peer) metricsReporter() { for { select { case <-p.metricsTicker.C: status := p.conn.Status() var sendQueueSize float64 for _, chStatus := range status.Channels { sendQueueSize += float64(chStatus.SendQueueSize) } p.metrics.PeerPendingSendBytes.With("peer_id", string(p.ID())).Set(sendQueueSize) case <-p.Quit(): return } } }