You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
Ethan Buchman 629e2fc2a0 update readme 7 years ago
client Extend abci-cli to allow integration tests 7 years ago
cmd/abci-cli Merge branch 'develop' into sdk2 7 years ago
example ABCI message updates (code/log/info) 7 years ago
scripts update go version to 1.9.2 7 years ago
server fix grpc version; add log_level and some logging 7 years ago
tests Merge branch 'develop' into sdk2 7 years ago
types ABCI message updates (code/log/info) 7 years ago
version version and changelog 7 years ago
.editorconfig add proto section to .editorconfig 7 years ago
.gitignore GasWanted and GasUsed for Check & Deliver 7 years ago
CHANGELOG.md version and changelog 7 years ago
Dockerfile.develop [dockerfile] install psmisc for tests 7 years ago
LICENSE TMSP -> ABCI 8 years ago
Makefile Use []byte instead of Bytes, use tmlibs/common.KVPair 7 years ago
README.md update readme 7 years ago
circle.yml Merge branch 'develop' into sdk2 7 years ago
glide.lock Use []byte instead of Bytes, use tmlibs/common.KVPair 7 years ago
glide.yaml Update glide.yaml and fix tests 7 years ago
specification.rst update readme 7 years ago
test.sh move comment 7 years ago

README.md

Application BlockChain Interface (ABCI)

CircleCI

Blockchains are systems for multi-master state machine replication. ABCI is an interface that defines the boundary between the replication engine (the blockchain), and the state machine (the application). By using a socket protocol, we enable a consensus engine running in one process to manage an application state running in another.

For background information on ABCI, motivations, and tendermint, please visit the documentation. The two guides to focus on are the Application Development Guide and Using ABCI-CLI.

Previously, the ABCI was referred to as TMSP.

The community has provided a number of addtional implementations, see the Tendermint Ecosystem

Specification

The primary specification is made using Protocol Buffers. To build it, run

make protoc

See protoc --help and the Protocol Buffers site for details on compiling for other languages. Note we also include a GRPC service definition.

For the specification as an interface in Go, see the types/application.go file.

See the spec file for a detailed description of the message types.

Install

go get github.com/tendermint/abci
cd $GOPATH/src/github.com/tendermint/abci
make get_vendor_deps
make install

Implementation

We provide three implementations of the ABCI in Go:

  • Golang in-process
  • ABCI-socket
  • GRPC

Note the GRPC version is maintained primarily to simplify onboarding and prototyping and is not receiving the same attention to security and performance as the others

In Process

The simplest implementation just uses function calls within Go. This means ABCI applications written in Golang can be compiled with TendermintCore and run as a single binary.

See the examples below for more information.

Socket (TSP)

ABCI is best implemented as a streaming protocol. The socket implementation provides for asynchronous, ordered message passing over unix or tcp. Messages are serialized using Protobuf3 and length-prefixed. Protobuf3 doesn't have an official length-prefix standard, so we use our own. The first byte represents the length of the big-endian encoded length.

For example, if the Protobuf3 encoded ABCI message is 0xDEADBEEF (4 bytes), the length-prefixed message is 0x0104DEADBEEF. If the Protobuf3 encoded ABCI message is 65535 bytes long, the length-prefixed message would be like 0x02FFFF....

GRPC

GRPC is an rpc framework native to Protocol Buffers with support in many languages. Implementing the ABCI using GRPC can allow for faster prototyping, but is expected to be much slower than the ordered, asynchronous socket protocol. The implementation has also not received as much testing or review.

Note the length-prefixing used in the socket implementation does not apply for GRPC.

Usage

The abci-cli tool wraps an ABCI client and can be used for probing/testing an ABCI server. For instance, abci-cli test will run a test sequence against a listening server running the Counter application (see below). It can also be used to run some example applications. See the documentation for more details.

Examples

Check out the variety of example applications in the example directory. It also contains the code refered to by the counter and dummy apps; these apps come built into the abci-cli binary.

Counter

The abci-cli counter application illustrates nonce checking in transactions. It's code looks like:

func cmdCounter(cmd *cobra.Command, args []string) error {

	app := counter.NewCounterApplication(flagSerial)

	logger := log.NewTMLogger(log.NewSyncWriter(os.Stdout))

	// Start the listener
	srv, err := server.NewServer(flagAddrC, flagAbci, app)
	if err != nil {
		return err
	}
	srv.SetLogger(logger.With("module", "abci-server"))
	if err := srv.Start(); err != nil {
		return err
	}

	// Wait forever
	cmn.TrapSignal(func() {
		// Cleanup
		srv.Stop()
	})
	return nil
}

and can be found in this file.

Dummy

The abci-cli dummy application, which illustrates a simple key-value Merkle tree

func cmdDummy(cmd *cobra.Command, args []string) error {
	logger := log.NewTMLogger(log.NewSyncWriter(os.Stdout))

	// Create the application - in memory or persisted to disk
	var app types.Application
	if flagPersist == "" {
		app = dummy.NewDummyApplication()
	} else {
		app = dummy.NewPersistentDummyApplication(flagPersist)
		app.(*dummy.PersistentDummyApplication).SetLogger(logger.With("module", "dummy"))
	}

	// Start the listener
	srv, err := server.NewServer(flagAddrD, flagAbci, app)
	if err != nil {
		return err
	}
	srv.SetLogger(logger.With("module", "abci-server"))
	if err := srv.Start(); err != nil {
		return err
	}

	// Wait forever
	cmn.TrapSignal(func() {
		// Cleanup
		srv.Stop()
	})
	return nil
}