- /*
- Computes a deterministic minimal height merkle tree hash.
- If the number of items is not a power of two, some leaves
- will be at different levels. Tries to keep both sides of
- the tree the same size, but the left may be one greater.
-
- Use this for short deterministic trees, such as the validator list.
- For larger datasets, use IAVLTree.
-
- *
- / \
- / \
- / \
- / \
- * *
- / \ / \
- / \ / \
- / \ / \
- * * * h6
- / \ / \ / \
- h0 h1 h2 h3 h4 h5
-
- */
-
- package merkle
-
- import (
- "bytes"
- "fmt"
- "sort"
-
- "github.com/tendermint/tendermint/Godeps/_workspace/src/code.google.com/p/go.crypto/ripemd160"
-
- . "github.com/tendermint/tendermint/common"
- "github.com/tendermint/tendermint/wire"
- )
-
- func SimpleHashFromTwoHashes(left []byte, right []byte) []byte {
- var n int64
- var err error
- var hasher = ripemd160.New()
- wire.WriteByteSlice(left, hasher, &n, &err)
- wire.WriteByteSlice(right, hasher, &n, &err)
- if err != nil {
- PanicCrisis(err)
- }
- return hasher.Sum(nil)
- }
-
- func SimpleHashFromHashes(hashes [][]byte) []byte {
- // Recursive impl.
- switch len(hashes) {
- case 0:
- return nil
- case 1:
- return hashes[0]
- default:
- left := SimpleHashFromHashes(hashes[:(len(hashes)+1)/2])
- right := SimpleHashFromHashes(hashes[(len(hashes)+1)/2:])
- return SimpleHashFromTwoHashes(left, right)
- }
- }
-
- // Convenience for SimpleHashFromHashes.
- func SimpleHashFromBinaries(items []interface{}) []byte {
- hashes := [][]byte{}
- for _, item := range items {
- hashes = append(hashes, SimpleHashFromBinary(item))
- }
- return SimpleHashFromHashes(hashes)
- }
-
- // General Convenience
- func SimpleHashFromBinary(item interface{}) []byte {
- hasher, n, err := ripemd160.New(), new(int64), new(error)
- wire.WriteBinary(item, hasher, n, err)
- if *err != nil {
- PanicCrisis(err)
- }
- return hasher.Sum(nil)
- }
-
- // Convenience for SimpleHashFromHashes.
- func SimpleHashFromHashables(items []Hashable) []byte {
- hashes := [][]byte{}
- for _, item := range items {
- hash := item.Hash()
- hashes = append(hashes, hash)
- }
- return SimpleHashFromHashes(hashes)
- }
-
- // Convenience for SimpleHashFromHashes.
- func SimpleHashFromMap(m map[string]interface{}) []byte {
- kpPairsH := MakeSortedKVPairs(m)
- return SimpleHashFromHashables(kpPairsH)
- }
-
- //--------------------------------------------------------------------------------
-
- /* Convenience struct for key-value pairs.
- A list of KVPairs is hashed via `SimpleHashFromHashables`.
- NOTE: Each `Value` is encoded for hashing without extra type information,
- so the user is presumed to be aware of the Value types.
- */
- type KVPair struct {
- Key string
- Value interface{}
- }
-
- func (kv KVPair) Hash() []byte {
- hasher, n, err := ripemd160.New(), new(int64), new(error)
- wire.WriteString(kv.Key, hasher, n, err)
- if kvH, ok := kv.Value.(Hashable); ok {
- wire.WriteByteSlice(kvH.Hash(), hasher, n, err)
- } else {
- wire.WriteBinary(kv.Value, hasher, n, err)
- }
- if *err != nil {
- PanicSanity(*err)
- }
- return hasher.Sum(nil)
- }
-
- type KVPairs []KVPair
-
- func (kvps KVPairs) Len() int { return len(kvps) }
- func (kvps KVPairs) Less(i, j int) bool { return kvps[i].Key < kvps[j].Key }
- func (kvps KVPairs) Swap(i, j int) { kvps[i], kvps[j] = kvps[j], kvps[i] }
- func (kvps KVPairs) Sort() { sort.Sort(kvps) }
-
- func MakeSortedKVPairs(m map[string]interface{}) []Hashable {
- kvPairs := []KVPair{}
- for k, v := range m {
- kvPairs = append(kvPairs, KVPair{k, v})
- }
- KVPairs(kvPairs).Sort()
- kvPairsH := []Hashable{}
- for _, kvp := range kvPairs {
- kvPairsH = append(kvPairsH, kvp)
- }
- return kvPairsH
- }
-
- //--------------------------------------------------------------------------------
-
- type SimpleProof struct {
- Index int `json:"index"`
- Total int `json:"total"`
- LeafHash []byte `json:"leaf_hash"`
- InnerHashes [][]byte `json:"inner_hashes"` // Hashes from leaf's sibling to a root's child.
- RootHash []byte `json:"root_hash"`
- }
-
- // proofs[0] is the proof for items[0].
- func SimpleProofsFromHashables(items []Hashable) (proofs []*SimpleProof) {
- trails, root := trailsFromHashables(items)
- proofs = make([]*SimpleProof, len(items))
- for i, trail := range trails {
- proofs[i] = &SimpleProof{
- Index: i,
- Total: len(items),
- LeafHash: trail.Hash,
- InnerHashes: trail.FlattenInnerHashes(),
- RootHash: root.Hash,
- }
- }
- return
- }
-
- // Verify that leafHash is a leaf hash of the simple-merkle-tree
- // which hashes to rootHash.
- func (sp *SimpleProof) Verify(leafHash []byte, rootHash []byte) bool {
- if !bytes.Equal(leafHash, sp.LeafHash) {
- return false
- }
- if !bytes.Equal(rootHash, sp.RootHash) {
- return false
- }
- computedHash := computeHashFromInnerHashes(sp.Index, sp.Total, sp.LeafHash, sp.InnerHashes)
- if computedHash == nil {
- return false
- }
- if !bytes.Equal(computedHash, rootHash) {
- return false
- }
- return true
- }
-
- func (sp *SimpleProof) String() string {
- return sp.StringIndented("")
- }
-
- func (sp *SimpleProof) StringIndented(indent string) string {
- return fmt.Sprintf(`SimpleProof{
- %s Index: %v
- %s Total: %v
- %s LeafHash: %X
- %s InnerHashes: %X
- %s RootHash: %X
- %s}`,
- indent, sp.Index,
- indent, sp.Total,
- indent, sp.LeafHash,
- indent, sp.InnerHashes,
- indent, sp.RootHash,
- indent)
- }
-
- // Use the leafHash and innerHashes to get the root merkle hash.
- // If the length of the innerHashes slice isn't exactly correct, the result is nil.
- func computeHashFromInnerHashes(index int, total int, leafHash []byte, innerHashes [][]byte) []byte {
- // Recursive impl.
- if index >= total {
- return nil
- }
- switch total {
- case 0:
- PanicSanity("Cannot call computeHashFromInnerHashes() with 0 total")
- return nil
- case 1:
- if len(innerHashes) != 0 {
- return nil
- }
- return leafHash
- default:
- if len(innerHashes) == 0 {
- return nil
- }
- numLeft := (total + 1) / 2
- if index < numLeft {
- leftHash := computeHashFromInnerHashes(index, numLeft, leafHash, innerHashes[:len(innerHashes)-1])
- if leftHash == nil {
- return nil
- }
- return SimpleHashFromTwoHashes(leftHash, innerHashes[len(innerHashes)-1])
- } else {
- rightHash := computeHashFromInnerHashes(index-numLeft, total-numLeft, leafHash, innerHashes[:len(innerHashes)-1])
- if rightHash == nil {
- return nil
- }
- return SimpleHashFromTwoHashes(innerHashes[len(innerHashes)-1], rightHash)
- }
- }
- }
-
- // Helper structure to construct merkle proof.
- // The node and the tree is thrown away afterwards.
- // Exactly one of node.Left and node.Right is nil, unless node is the root, in which case both are nil.
- // node.Parent.Hash = hash(node.Hash, node.Right.Hash) or
- // hash(node.Left.Hash, node.Hash), depending on whether node is a left/right child.
- type SimpleProofNode struct {
- Hash []byte
- Parent *SimpleProofNode
- Left *SimpleProofNode // Left sibling (only one of Left,Right is set)
- Right *SimpleProofNode // Right sibling (only one of Left,Right is set)
- }
-
- // Starting from a leaf SimpleProofNode, FlattenInnerHashes() will return
- // the inner hashes for the item corresponding to the leaf.
- func (spn *SimpleProofNode) FlattenInnerHashes() [][]byte {
- // Nonrecursive impl.
- innerHashes := [][]byte{}
- for spn != nil {
- if spn.Left != nil {
- innerHashes = append(innerHashes, spn.Left.Hash)
- } else if spn.Right != nil {
- innerHashes = append(innerHashes, spn.Right.Hash)
- } else {
- break
- }
- spn = spn.Parent
- }
- return innerHashes
- }
-
- // trails[0].Hash is the leaf hash for items[0].
- // trails[i].Parent.Parent....Parent == root for all i.
- func trailsFromHashables(items []Hashable) (trails []*SimpleProofNode, root *SimpleProofNode) {
- // Recursive impl.
- switch len(items) {
- case 0:
- return nil, nil
- case 1:
- trail := &SimpleProofNode{items[0].Hash(), nil, nil, nil}
- return []*SimpleProofNode{trail}, trail
- default:
- lefts, leftRoot := trailsFromHashables(items[:(len(items)+1)/2])
- rights, rightRoot := trailsFromHashables(items[(len(items)+1)/2:])
- rootHash := SimpleHashFromTwoHashes(leftRoot.Hash, rightRoot.Hash)
- root := &SimpleProofNode{rootHash, nil, nil, nil}
- leftRoot.Parent = root
- leftRoot.Right = rightRoot
- rightRoot.Parent = root
- rightRoot.Left = leftRoot
- return append(lefts, rights...), root
- }
- }
|