- package p2p
-
- import (
- "context"
- "errors"
- "fmt"
- "io"
- "math"
- "math/rand"
- "net"
- "net/url"
- "runtime/debug"
- "sort"
- "strconv"
- "strings"
- "sync"
- "time"
-
- "github.com/gogo/protobuf/proto"
- "github.com/google/orderedcode"
- dbm "github.com/tendermint/tm-db"
-
- "github.com/tendermint/tendermint/libs/cmap"
- "github.com/tendermint/tendermint/libs/log"
- "github.com/tendermint/tendermint/libs/service"
- tmconn "github.com/tendermint/tendermint/p2p/conn"
- p2pproto "github.com/tendermint/tendermint/proto/tendermint/p2p"
- )
-
- // PeerAddress is a peer address URL. It differs from Endpoint in that the
- // address hostname may be expanded into multiple IP addresses (thus multiple
- // endpoints).
- //
- // If the URL is opaque, i.e. of the form "scheme:<opaque>", then the opaque
- // part has to contain either the node ID or a node ID and path in the form
- // "scheme:<nodeid>@<path>".
- type PeerAddress struct {
- ID NodeID
- Protocol Protocol
- Hostname string
- Port uint16
- Path string
- }
-
- // ParsePeerAddress parses a peer address URL into a PeerAddress,
- // normalizing and validating it.
- func ParsePeerAddress(urlString string) (PeerAddress, error) {
- url, err := url.Parse(urlString)
- if err != nil || url == nil {
- return PeerAddress{}, fmt.Errorf("invalid peer address %q: %w", urlString, err)
- }
-
- address := PeerAddress{}
-
- // If the URL is opaque, i.e. in the form "scheme:<opaque>", we specify the
- // opaque bit to be either a node ID or a node ID and path in the form
- // "scheme:<nodeid>@<path>".
- if url.Opaque != "" {
- parts := strings.Split(url.Opaque, "@")
- if len(parts) > 2 {
- return PeerAddress{}, fmt.Errorf("invalid address format %q, unexpected @", urlString)
- }
- address.ID, err = NewNodeID(parts[0])
- if err != nil {
- return PeerAddress{}, fmt.Errorf("invalid peer ID %q: %w", parts[0], err)
- }
- if len(parts) == 2 {
- address.Path = parts[1]
- }
- return address, nil
- }
-
- // Otherwise, just parse a normal networked URL.
- address.ID, err = NewNodeID(url.User.Username())
- if err != nil {
- return PeerAddress{}, fmt.Errorf("invalid peer ID %q: %w", url.User.Username(), err)
- }
-
- if url.Scheme != "" {
- address.Protocol = Protocol(strings.ToLower(url.Scheme))
- } else {
- address.Protocol = defaultProtocol
- }
-
- address.Hostname = strings.ToLower(url.Hostname())
-
- if portString := url.Port(); portString != "" {
- port64, err := strconv.ParseUint(portString, 10, 16)
- if err != nil {
- return PeerAddress{}, fmt.Errorf("invalid port %q: %w", portString, err)
- }
- address.Port = uint16(port64)
- }
-
- // NOTE: URL paths are case-sensitive, so we don't lowercase them.
- address.Path = url.Path
- if url.RawPath != "" {
- address.Path = url.RawPath
- }
- if url.RawQuery != "" {
- address.Path += "?" + url.RawQuery
- }
- if url.RawFragment != "" {
- address.Path += "#" + url.RawFragment
- }
- if address.Path != "" && address.Path[0] != '/' && address.Path[0] != '#' {
- address.Path = "/" + address.Path
- }
-
- return address, address.Validate()
- }
-
- // Resolve resolves a PeerAddress into a set of Endpoints, by expanding
- // out a DNS hostname to IP addresses.
- func (a PeerAddress) Resolve(ctx context.Context) ([]Endpoint, error) {
- // If there is no hostname, this is an opaque URL in the form
- // "scheme:<opaque>".
- if a.Hostname == "" {
- return []Endpoint{{
- PeerID: a.ID,
- Protocol: a.Protocol,
- Path: a.Path,
- }}, nil
- }
-
- ips, err := net.DefaultResolver.LookupIP(ctx, "ip", a.Hostname)
- if err != nil {
- return nil, err
- }
- endpoints := make([]Endpoint, len(ips))
- for i, ip := range ips {
- endpoints[i] = Endpoint{
- PeerID: a.ID,
- Protocol: a.Protocol,
- IP: ip,
- Port: a.Port,
- Path: a.Path,
- }
- }
- return endpoints, nil
- }
-
- // Validates validates a PeerAddress.
- func (a PeerAddress) Validate() error {
- if a.Protocol == "" {
- return errors.New("no protocol")
- }
- if a.ID == "" {
- return errors.New("no peer ID")
- } else if err := a.ID.Validate(); err != nil {
- return fmt.Errorf("invalid peer ID: %w", err)
- }
- if a.Port > 0 && a.Hostname == "" {
- return errors.New("cannot specify port without hostname")
- }
- return nil
- }
-
- // String formats the address as a URL string.
- func (a PeerAddress) String() string {
- // Handle opaque URLs.
- if a.Hostname == "" {
- s := fmt.Sprintf("%s:%s", a.Protocol, a.ID)
- if a.Path != "" {
- s += "@" + a.Path
- }
- return s
- }
-
- s := fmt.Sprintf("%s://%s@%s", a.Protocol, a.ID, a.Hostname)
- if a.Port > 0 {
- s += ":" + strconv.Itoa(int(a.Port))
- }
- s += a.Path // We've already normalized the path with appropriate prefix in ParsePeerAddress()
- return s
- }
-
- // PeerStatus specifies peer statuses.
- type PeerStatus string
-
- const (
- PeerStatusNew = PeerStatus("new") // New peer which we haven't tried to contact yet.
- PeerStatusUp = PeerStatus("up") // Peer which we have an active connection to.
- PeerStatusDown = PeerStatus("down") // Peer which we're temporarily disconnected from.
- PeerStatusRemoved = PeerStatus("removed") // Peer which has been removed.
- PeerStatusBanned = PeerStatus("banned") // Peer which is banned for misbehavior.
- )
-
- // PeerError is a peer error reported by a reactor via the Error channel. The
- // severity may cause the peer to be disconnected or banned depending on policy.
- type PeerError struct {
- PeerID NodeID
- Err error
- Severity PeerErrorSeverity
- }
-
- // PeerErrorSeverity determines the severity of a peer error.
- type PeerErrorSeverity string
-
- const (
- PeerErrorSeverityLow PeerErrorSeverity = "low" // Mostly ignored.
- PeerErrorSeverityHigh PeerErrorSeverity = "high" // May disconnect.
- PeerErrorSeverityCritical PeerErrorSeverity = "critical" // Ban.
- )
-
- // PeerUpdatesCh defines a wrapper around a PeerUpdate go channel that allows
- // a reactor to listen for peer updates and safely close it when stopping.
- type PeerUpdatesCh struct {
- closeOnce sync.Once
-
- // updatesCh defines the go channel in which the router sends peer updates to
- // reactors. Each reactor will have its own PeerUpdatesCh to listen for updates
- // from.
- updatesCh chan PeerUpdate
-
- // doneCh is used to signal that a PeerUpdatesCh is closed. It is the
- // reactor's responsibility to invoke Close.
- doneCh chan struct{}
- }
-
- // NewPeerUpdates returns a reference to a new PeerUpdatesCh.
- func NewPeerUpdates(updatesCh chan PeerUpdate) *PeerUpdatesCh {
- return &PeerUpdatesCh{
- updatesCh: updatesCh,
- doneCh: make(chan struct{}),
- }
- }
-
- // Updates returns a read-only go channel where a consuming reactor can listen
- // for peer updates sent from the router.
- func (puc *PeerUpdatesCh) Updates() <-chan PeerUpdate {
- return puc.updatesCh
- }
-
- // Close closes the PeerUpdatesCh channel. It should only be closed by the respective
- // reactor when stopping and ensure nothing is listening for updates.
- //
- // NOTE: After a PeerUpdatesCh is closed, the router may safely assume it can no
- // longer send on the internal updatesCh, however it should NEVER explicitly close
- // it as that could result in panics by sending on a closed channel.
- func (puc *PeerUpdatesCh) Close() {
- puc.closeOnce.Do(func() {
- close(puc.doneCh)
- })
- }
-
- // Done returns a read-only version of the PeerUpdatesCh's internal doneCh go
- // channel that should be used by a router to signal when it is safe to explicitly
- // not send any peer updates.
- func (puc *PeerUpdatesCh) Done() <-chan struct{} {
- return puc.doneCh
- }
-
- // PeerUpdate is a peer status update for reactors.
- type PeerUpdate struct {
- PeerID NodeID
- Status PeerStatus
- }
-
- // PeerScore is a numeric score assigned to a peer (higher is better).
- type PeerScore uint16
-
- const (
- // PeerScorePersistent is added for persistent peers.
- PeerScorePersistent PeerScore = 100
- )
-
- // PeerManager manages peer lifecycle information, using a peerStore for
- // underlying storage. Its primary purpose is to determine which peers to
- // connect to next, make sure a peer only has a single active connection (either
- // inbound or outbound), and evict peers to make room for higher-scored peers.
- // It does not manage actual connections (this is handled by the Router),
- // only the peer lifecycle state.
- //
- // We track dialing and connected states independently. This allows us to accept
- // an inbound connection from a peer while the router is also dialing an
- // outbound connection to that same peer, which will cause the dialer to
- // eventually error when attempting to mark the peer as connected. This also
- // avoids race conditions where multiple goroutines may end up dialing a peer if
- // an incoming connection was briefly accepted and disconnected while we were
- // also dialing.
- //
- // For an outbound connection, the flow is as follows:
- // - DialNext: returns a peer address to dial, marking the peer as dialing.
- // - DialFailed: reports a dial failure, unmarking the peer as dialing.
- // - Dialed: successfully dialed, unmarking as dialing and marking as connected
- // (or erroring if already connected).
- // - Ready: routing is up, broadcasts a PeerStatusUp peer update to subscribers.
- // - Disconnected: peer disconnects, unmarking as connected and broadcasts a
- // PeerStatusDown peer update.
- //
- // For an inbound connection, the flow is as follows:
- // - Accepted: successfully accepted connection, marking as connected (or erroring
- // if already connected).
- // - Ready: routing is up, broadcasts a PeerStatusUp peer update to subscribers.
- // - Disconnected: peer disconnects, unmarking as connected and broadcasts a
- // PeerStatusDown peer update.
- //
- // When evicting peers, either because peers are explicitly scheduled for
- // eviction or we are connected to too many peers, the flow is as follows:
- // - EvictNext: if marked evict and connected, unmark evict and mark evicting.
- // If beyond MaxConnected, pick lowest-scored peer and mark evicting.
- // - Disconnected: unmark connected, evicting, evict, and broadcast a
- // PeerStatusDown peer update.
- //
- // If all connection slots are full (at MaxConnections), we can use up to
- // MaxConnectionsUpgrade additional connections to probe any higher-scored
- // unconnected peers, and if we reach them (or they reach us) we allow the
- // connection and evict a lower-scored peer. We mark the lower-scored peer as
- // upgrading[from]=to to make sure no other higher-scored peers can claim the
- // same one for an upgrade. The flow is as follows:
- // - Accepted: if upgrade is possible, mark connected and add lower-scored to evict.
- // - DialNext: if upgrade is possible, mark upgrading[from]=to and dialing.
- // - DialFailed: unmark upgrading[from]=to and dialing.
- // - Dialed: unmark upgrading[from]=to and dialing, mark as connected, add
- // lower-scored to evict.
- // - EvictNext: pick peer from evict, mark as evicting.
- // - Disconnected: unmark connected, upgrading[from]=to, evict, evicting.
- type PeerManager struct {
- options PeerManagerOptions
- wakeDialCh chan struct{} // wakes up DialNext() on relevant peer changes
- wakeEvictCh chan struct{} // wakes up EvictNext() on relevant peer changes
- closeCh chan struct{} // signal channel for Close()
- closeOnce sync.Once
-
- mtx sync.Mutex
- store *peerStore
- dialing map[NodeID]bool // peers being dialed (DialNext -> Dialed/DialFail)
- upgrading map[NodeID]NodeID // peers claimed for upgrade (DialNext -> Dialed/DialFail)
- connected map[NodeID]bool // connected peers (Dialed/Accepted -> Disconnected)
- evict map[NodeID]bool // peers scheduled for eviction (Connected -> EvictNext)
- evicting map[NodeID]bool // peers being evicted (EvictNext -> Disconnected)
- subscriptions map[*PeerUpdatesCh]*PeerUpdatesCh // keyed by struct identity (address)
- }
-
- // PeerManagerOptions specifies options for a PeerManager.
- type PeerManagerOptions struct {
- // PersistentPeers are peers that we want to maintain persistent connections
- // to. These will be scored higher than other peers, and if
- // MaxConnectedUpgrade is non-zero any lower-scored peers will be evicted if
- // necessary to make room for these.
- PersistentPeers []NodeID
-
- // MaxPeers is the maximum number of peers to track information about, i.e.
- // store in the peer store. When exceeded, the lowest-scored unconnected peers
- // will be deleted. 0 means no limit.
- MaxPeers uint16
-
- // MaxConnected is the maximum number of connected peers (inbound and
- // outbound). 0 means no limit.
- MaxConnected uint16
-
- // MaxConnectedUpgrade is the maximum number of additional connections to
- // use for probing any better-scored peers to upgrade to when all connection
- // slots are full. 0 disables peer upgrading.
- //
- // For example, if we are already connected to MaxConnected peers, but we
- // know or learn about better-scored peers (e.g. configured persistent
- // peers) that we are not connected too, then we can probe these peers by
- // using up to MaxConnectedUpgrade connections, and once connected evict the
- // lowest-scored connected peers. This also works for inbound connections,
- // i.e. if a higher-scored peer attempts to connect to us, we can accept
- // the connection and evict a lower-scored peer.
- MaxConnectedUpgrade uint16
-
- // MinRetryTime is the minimum time to wait between retries. Retry times
- // double for each retry, up to MaxRetryTime. 0 disables retries.
- MinRetryTime time.Duration
-
- // MaxRetryTime is the maximum time to wait between retries. 0 means
- // no maximum, in which case the retry time will keep doubling.
- MaxRetryTime time.Duration
-
- // MaxRetryTimePersistent is the maximum time to wait between retries for
- // peers listed in PersistentPeers. 0 uses MaxRetryTime instead.
- MaxRetryTimePersistent time.Duration
-
- // RetryTimeJitter is the upper bound of a random interval added to
- // retry times, to avoid thundering herds. 0 disables jutter.
- RetryTimeJitter time.Duration
- }
-
- // NewPeerManager creates a new peer manager.
- func NewPeerManager(peerDB dbm.DB, options PeerManagerOptions) (*PeerManager, error) {
- store, err := newPeerStore(peerDB)
- if err != nil {
- return nil, err
- }
- peerManager := &PeerManager{
- options: options,
- closeCh: make(chan struct{}),
-
- // We use a buffer of size 1 for these trigger channels, with
- // non-blocking sends. This ensures that if e.g. wakeDial() is called
- // multiple times before the initial trigger is picked up we only
- // process the trigger once.
- //
- // FIXME: This should maybe be a libs/sync type.
- wakeDialCh: make(chan struct{}, 1),
- wakeEvictCh: make(chan struct{}, 1),
-
- store: store,
- dialing: map[NodeID]bool{},
- upgrading: map[NodeID]NodeID{},
- connected: map[NodeID]bool{},
- evict: map[NodeID]bool{},
- evicting: map[NodeID]bool{},
- subscriptions: map[*PeerUpdatesCh]*PeerUpdatesCh{},
- }
- if err = peerManager.configurePeers(); err != nil {
- return nil, err
- }
- if err = peerManager.prunePeers(); err != nil {
- return nil, err
- }
- return peerManager, nil
- }
-
- // configurePeers configures peers in the peer store with ephemeral runtime
- // configuration, e.g. setting peerInfo.Persistent based on
- // PeerManagerOptions.PersistentPeers. The caller must hold the mutex lock.
- func (m *PeerManager) configurePeers() error {
- for _, peerID := range m.options.PersistentPeers {
- if peer, ok := m.store.Get(peerID); ok {
- peer.Persistent = true
- if err := m.store.Set(peer); err != nil {
- return err
- }
- }
- }
- return nil
- }
-
- // prunePeers removes peers from the peer store if it contains more than
- // MaxPeers peers. The lowest-scored non-connected peers are removed.
- // The caller must hold the mutex lock.
- func (m *PeerManager) prunePeers() error {
- if m.options.MaxPeers == 0 || m.store.Size() <= int(m.options.MaxPeers) {
- return nil
- }
- m.mtx.Lock()
- defer m.mtx.Unlock()
-
- ranked := m.store.Ranked()
- for i := len(ranked) - 1; i >= 0; i-- {
- peerID := ranked[i].ID
- switch {
- case m.store.Size() <= int(m.options.MaxPeers):
- break
- case m.dialing[peerID]:
- case m.connected[peerID]:
- case m.evicting[peerID]:
- default:
- if err := m.store.Delete(peerID); err != nil {
- return err
- }
- }
- }
- return nil
- }
-
- // Close closes the peer manager, releasing resources allocated with it
- // (specifically any running goroutines).
- func (m *PeerManager) Close() {
- m.closeOnce.Do(func() {
- close(m.closeCh)
- })
- }
-
- // Add adds a peer to the manager, given as an address. If the peer already
- // exists, the address is added to it.
- func (m *PeerManager) Add(address PeerAddress) error {
- if err := address.Validate(); err != nil {
- return err
- }
- m.mtx.Lock()
- defer m.mtx.Unlock()
-
- peer, ok := m.store.Get(address.ID)
- if !ok {
- peer = m.makePeerInfo(address.ID)
- }
- if _, ok := peer.AddressInfo[address.String()]; !ok {
- peer.AddressInfo[address.String()] = &peerAddressInfo{Address: address}
- }
- if err := m.store.Set(peer); err != nil {
- return err
- }
- if err := m.prunePeers(); err != nil {
- return err
- }
- m.wakeDial()
- return nil
- }
-
- // Advertise returns a list of peer addresses to advertise to a peer.
- //
- // FIXME: This is fairly naïve and only returns the addresses of the
- // highest-ranked peers.
- func (m *PeerManager) Advertise(peerID NodeID, limit uint16) []PeerAddress {
- m.mtx.Lock()
- defer m.mtx.Unlock()
-
- addresses := make([]PeerAddress, 0, limit)
- for _, peer := range m.store.Ranked() {
- if peer.ID == peerID {
- continue
- }
- for _, addressInfo := range peer.AddressInfo {
- if len(addresses) >= int(limit) {
- return addresses
- }
- addresses = append(addresses, addressInfo.Address)
- }
- }
- return addresses
- }
-
- // makePeerInfo creates a peerInfo for a new peer.
- func (m *PeerManager) makePeerInfo(id NodeID) peerInfo {
- isPersistent := false
- for _, p := range m.options.PersistentPeers {
- if id == p {
- isPersistent = true
- break
- }
- }
- return peerInfo{
- ID: id,
- Persistent: isPersistent,
- AddressInfo: map[string]*peerAddressInfo{},
- }
- }
-
- // Subscribe subscribes to peer updates. The caller must consume the peer
- // updates in a timely fashion and close the subscription when done, since
- // delivery is guaranteed and will block peer connection/disconnection
- // otherwise.
- func (m *PeerManager) Subscribe() *PeerUpdatesCh {
- // FIXME: We may want to use a size 1 buffer here. When the router
- // broadcasts a peer update it has to loop over all of the
- // subscriptions, and we want to avoid blocking and waiting for a
- // context switch before continuing to the next subscription. This also
- // prevents tail latencies from compounding across updates. We also want
- // to make sure the subscribers are reasonably in sync, so it should be
- // kept at 1. However, this should be benchmarked first.
- peerUpdates := NewPeerUpdates(make(chan PeerUpdate))
- m.mtx.Lock()
- m.subscriptions[peerUpdates] = peerUpdates
- m.mtx.Unlock()
-
- go func() {
- <-peerUpdates.Done()
- m.mtx.Lock()
- delete(m.subscriptions, peerUpdates)
- m.mtx.Unlock()
- }()
- return peerUpdates
- }
-
- // broadcast broadcasts a peer update to all subscriptions. The caller must
- // already hold the mutex lock. This means the mutex is held for the duration
- // of the broadcast, which we want to make sure all subscriptions receive all
- // updates in the same order.
- //
- // FIXME: Consider using more fine-grained mutexes here, and/or a channel to
- // enforce ordering of updates.
- func (m *PeerManager) broadcast(peerUpdate PeerUpdate) {
- for _, sub := range m.subscriptions {
- select {
- case sub.updatesCh <- peerUpdate:
- case <-sub.doneCh:
- }
- }
- }
-
- // DialNext finds an appropriate peer address to dial, and marks it as dialing.
- // If no peer is found, or all connection slots are full, it blocks until one
- // becomes available. The caller must call Dialed() or DialFailed() for the
- // returned peer. The context can be used to cancel the call.
- func (m *PeerManager) DialNext(ctx context.Context) (NodeID, PeerAddress, error) {
- for {
- id, address, err := m.TryDialNext()
- if err != nil || id != "" {
- return id, address, err
- }
- select {
- case <-m.wakeDialCh:
- case <-ctx.Done():
- return "", PeerAddress{}, ctx.Err()
- }
- }
- }
-
- // TryDialNext is equivalent to DialNext(), but immediately returns an empty
- // peer ID if no peers or connection slots are available.
- func (m *PeerManager) TryDialNext() (NodeID, PeerAddress, error) {
- m.mtx.Lock()
- defer m.mtx.Unlock()
-
- // We allow dialing MaxConnected+MaxConnectedUpgrade peers. Including
- // MaxConnectedUpgrade allows us to probe additional peers that have a
- // higher score than any other peers, and if successful evict it.
- if m.options.MaxConnected > 0 &&
- len(m.connected)+len(m.dialing) >= int(m.options.MaxConnected)+int(m.options.MaxConnectedUpgrade) {
- return "", PeerAddress{}, nil
- }
-
- for _, peer := range m.store.Ranked() {
- if m.dialing[peer.ID] || m.connected[peer.ID] {
- continue
- }
-
- for _, addressInfo := range peer.AddressInfo {
- if time.Since(addressInfo.LastDialFailure) < m.retryDelay(addressInfo.DialFailures, peer.Persistent) {
- continue
- }
-
- // We now have an eligible address to dial. If we're full but have
- // upgrade capacity (as checked above), we find a lower-scored peer
- // we can replace and mark it as upgrading so noone else claims it.
- //
- // If we don't find one, there is no point in trying additional
- // peers, since they will all have the same or lower score than this
- // peer (since they're ordered by score via peerStore.Ranked).
- if m.options.MaxConnected > 0 && len(m.connected) >= int(m.options.MaxConnected) {
- upgradeFromPeer := m.findUpgradeCandidate(peer.ID, peer.Score())
- if upgradeFromPeer == "" {
- return "", PeerAddress{}, nil
- }
- m.upgrading[upgradeFromPeer] = peer.ID
- }
-
- m.dialing[peer.ID] = true
- return peer.ID, addressInfo.Address, nil
- }
- }
- return "", PeerAddress{}, nil
- }
-
- // wakeDial is used to notify DialNext about changes that *may* cause new
- // peers to become eligible for dialing, such as peer disconnections and
- // retry timeouts.
- func (m *PeerManager) wakeDial() {
- // The channel has a 1-size buffer. A non-blocking send ensures
- // we only queue up at most 1 trigger between each DialNext().
- select {
- case m.wakeDialCh <- struct{}{}:
- default:
- }
- }
-
- // wakeEvict is used to notify EvictNext about changes that *may* cause
- // peers to become eligible for eviction, such as peer upgrades.
- func (m *PeerManager) wakeEvict() {
- // The channel has a 1-size buffer. A non-blocking send ensures
- // we only queue up at most 1 trigger between each EvictNext().
- select {
- case m.wakeEvictCh <- struct{}{}:
- default:
- }
- }
-
- // retryDelay calculates a dial retry delay using exponential backoff, based on
- // retry settings in PeerManagerOptions. If MinRetryTime is 0, this returns
- // MaxInt64 (i.e. an infinite retry delay, effectively disabling retries).
- func (m *PeerManager) retryDelay(failures uint32, persistent bool) time.Duration {
- if failures == 0 {
- return 0
- }
- if m.options.MinRetryTime == 0 {
- return time.Duration(math.MaxInt64)
- }
- maxDelay := m.options.MaxRetryTime
- if persistent && m.options.MaxRetryTimePersistent > 0 {
- maxDelay = m.options.MaxRetryTimePersistent
- }
-
- delay := m.options.MinRetryTime * time.Duration(math.Pow(2, float64(failures)))
- if maxDelay > 0 && delay > maxDelay {
- delay = maxDelay
- }
- // FIXME: This should use a PeerManager-scoped RNG.
- delay += time.Duration(rand.Int63n(int64(m.options.RetryTimeJitter))) // nolint:gosec
- return delay
- }
-
- // DialFailed reports a failed dial attempt. This will make the peer available
- // for dialing again when appropriate.
- //
- // FIXME: This should probably delete or mark bad addresses/peers after some time.
- func (m *PeerManager) DialFailed(peerID NodeID, address PeerAddress) error {
- m.mtx.Lock()
- defer m.mtx.Unlock()
-
- delete(m.dialing, peerID)
- for from, to := range m.upgrading {
- if to == peerID {
- delete(m.upgrading, from) // Unmark failed upgrade attempt.
- }
- }
-
- peer, ok := m.store.Get(peerID)
- if !ok { // Peer may have been removed while dialing, ignore.
- return nil
- }
- addressInfo, ok := peer.AddressInfo[address.String()]
- if !ok {
- return nil // Assume the address has been removed, ignore.
- }
- addressInfo.LastDialFailure = time.Now().UTC()
- addressInfo.DialFailures++
- if err := m.store.Set(peer); err != nil {
- return err
- }
-
- // We spawn a goroutine that notifies DialNext() again when the retry
- // timeout has elapsed, so that we can consider dialing it again.
- go func() {
- retryDelay := m.retryDelay(addressInfo.DialFailures, peer.Persistent)
- if retryDelay == time.Duration(math.MaxInt64) {
- return
- }
- // Use an explicit timer with deferred cleanup instead of
- // time.After(), to avoid leaking goroutines on PeerManager.Close().
- timer := time.NewTimer(retryDelay)
- defer timer.Stop()
- select {
- case <-timer.C:
- m.wakeDial()
- case <-m.closeCh:
- }
- }()
-
- m.wakeDial()
- return nil
- }
-
- // Dialed marks a peer as successfully dialed. Any further incoming connections
- // will be rejected, and once disconnected the peer may be dialed again.
- func (m *PeerManager) Dialed(peerID NodeID, address PeerAddress) error {
- m.mtx.Lock()
- defer m.mtx.Unlock()
-
- delete(m.dialing, peerID)
-
- var upgradeFromPeer NodeID
- for from, to := range m.upgrading {
- if to == peerID {
- delete(m.upgrading, from)
- upgradeFromPeer = from
- // Don't break, just in case this peer was marked as upgrading for
- // multiple lower-scored peers (shouldn't really happen).
- }
- }
-
- if m.connected[peerID] {
- return fmt.Errorf("peer %v is already connected", peerID)
- }
- if m.options.MaxConnected > 0 &&
- len(m.connected) >= int(m.options.MaxConnected)+int(m.options.MaxConnectedUpgrade) {
- return fmt.Errorf("already connected to maximum number of peers")
- }
-
- peer, ok := m.store.Get(peerID)
- if !ok {
- return fmt.Errorf("peer %q was removed while dialing", peerID)
- }
- now := time.Now().UTC()
- peer.LastConnected = now
- if addressInfo, ok := peer.AddressInfo[address.String()]; ok {
- addressInfo.DialFailures = 0
- addressInfo.LastDialSuccess = now
- // If not found, assume address has been removed.
- }
- if err := m.store.Set(peer); err != nil {
- return err
- }
-
- if upgradeFromPeer != "" && m.options.MaxConnected > 0 &&
- len(m.connected) >= int(m.options.MaxConnected) {
- // Look for an even lower-scored peer that may have appeared
- // since we started the upgrade.
- if p, ok := m.store.Get(upgradeFromPeer); ok {
- if u := m.findUpgradeCandidate(p.ID, p.Score()); u != "" {
- upgradeFromPeer = u
- }
- }
- m.evict[upgradeFromPeer] = true
- }
- m.connected[peerID] = true
- m.wakeEvict()
-
- return nil
- }
-
- // Accepted marks an incoming peer connection successfully accepted. If the peer
- // is already connected or we don't allow additional connections then this will
- // return an error.
- //
- // If full but MaxConnectedUpgrade is non-zero and the incoming peer is
- // better-scored than any existing peers, then we accept it and evict a
- // lower-scored peer.
- //
- // NOTE: We can't take an address here, since e.g. TCP uses a different port
- // number for outbound traffic than inbound traffic, so the peer's endpoint
- // wouldn't necessarily be an appropriate address to dial.
- //
- // FIXME: When we accept a connection from a peer, we should register that
- // peer's address in the peer store so that we can dial it later. In order to do
- // that, we'll need to get the remote address after all, but as noted above that
- // can't be the remote endpoint since that will usually have the wrong port
- // number.
- func (m *PeerManager) Accepted(peerID NodeID) error {
- m.mtx.Lock()
- defer m.mtx.Unlock()
-
- if m.connected[peerID] {
- return fmt.Errorf("peer %q is already connected", peerID)
- }
- if m.options.MaxConnected > 0 &&
- len(m.connected) >= int(m.options.MaxConnected)+int(m.options.MaxConnectedUpgrade) {
- return fmt.Errorf("already connected to maximum number of peers")
- }
-
- peer, ok := m.store.Get(peerID)
- if !ok {
- peer = m.makePeerInfo(peerID)
- }
-
- // If all connections slots are full, but we allow upgrades (and we checked
- // above that we have upgrade capacity), then we can look for a lower-scored
- // peer to replace and if found accept the connection anyway and evict it.
- var upgradeFromPeer NodeID
- if m.options.MaxConnected > 0 && len(m.connected) >= int(m.options.MaxConnected) {
- upgradeFromPeer = m.findUpgradeCandidate(peer.ID, peer.Score())
- if upgradeFromPeer == "" {
- return fmt.Errorf("already connected to maximum number of peers")
- }
- }
-
- peer.LastConnected = time.Now().UTC()
- if err := m.store.Set(peer); err != nil {
- return err
- }
-
- m.connected[peerID] = true
- if upgradeFromPeer != "" {
- m.evict[upgradeFromPeer] = true
- }
- m.wakeEvict()
- return nil
- }
-
- // Ready marks a peer as ready, broadcasting status updates to subscribers. The
- // peer must already be marked as connected. This is separate from Dialed() and
- // Accepted() to allow the router to set up its internal queues before reactors
- // start sending messages.
- func (m *PeerManager) Ready(peerID NodeID) {
- m.mtx.Lock()
- defer m.mtx.Unlock()
-
- if m.connected[peerID] {
- m.broadcast(PeerUpdate{
- PeerID: peerID,
- Status: PeerStatusUp,
- })
- }
- }
-
- // Disconnected unmarks a peer as connected, allowing new connections to be
- // established.
- func (m *PeerManager) Disconnected(peerID NodeID) error {
- m.mtx.Lock()
- defer m.mtx.Unlock()
-
- delete(m.connected, peerID)
- delete(m.upgrading, peerID)
- delete(m.evict, peerID)
- delete(m.evicting, peerID)
- m.broadcast(PeerUpdate{
- PeerID: peerID,
- Status: PeerStatusDown,
- })
- m.wakeDial()
- return nil
- }
-
- // EvictNext returns the next peer to evict (i.e. disconnect). If no evictable
- // peers are found, the call will block until one becomes available or the
- // context is cancelled.
- func (m *PeerManager) EvictNext(ctx context.Context) (NodeID, error) {
- for {
- id, err := m.TryEvictNext()
- if err != nil || id != "" {
- return id, err
- }
- select {
- case <-m.wakeEvictCh:
- case <-ctx.Done():
- return "", ctx.Err()
- }
- }
- }
-
- // TryEvictNext is equivalent to EvictNext, but immediately returns an empty
- // node ID if no evictable peers are found.
- func (m *PeerManager) TryEvictNext() (NodeID, error) {
- m.mtx.Lock()
- defer m.mtx.Unlock()
-
- // If any connected peers are explicitly scheduled for eviction, we return a
- // random one.
- for peerID := range m.evict {
- delete(m.evict, peerID)
- if m.connected[peerID] && !m.evicting[peerID] {
- m.evicting[peerID] = true
- return peerID, nil
- }
- }
-
- // If we're below capacity, we don't need to evict anything.
- if m.options.MaxConnected == 0 ||
- len(m.connected)-len(m.evicting) <= int(m.options.MaxConnected) {
- return "", nil
- }
-
- // If we're above capacity, just pick the lowest-ranked peer to evict.
- ranked := m.store.Ranked()
- for i := len(ranked) - 1; i >= 0; i-- {
- peer := ranked[i]
- if m.connected[peer.ID] && !m.evicting[peer.ID] {
- m.evicting[peer.ID] = true
- return peer.ID, nil
- }
- }
-
- return "", nil
- }
-
- // findUpgradeCandidate looks for a lower-scored peer that we could evict
- // to make room for the given peer. Returns an empty ID if none is found.
- // The caller must hold the mutex lock.
- func (m *PeerManager) findUpgradeCandidate(id NodeID, score PeerScore) NodeID {
- ranked := m.store.Ranked()
- for i := len(ranked) - 1; i >= 0; i-- {
- candidate := ranked[i]
- switch {
- case candidate.Score() >= score:
- return "" // no further peers can be scored lower, due to sorting
- case !m.connected[candidate.ID]:
- case m.evict[candidate.ID]:
- case m.evicting[candidate.ID]:
- case m.upgrading[candidate.ID] != "":
- default:
- return candidate.ID
- }
- }
- return ""
- }
-
- // GetHeight returns a peer's height, as reported via SetHeight. If the peer
- // or height is unknown, this returns 0.
- //
- // FIXME: This is a temporary workaround for the peer state stored via the
- // legacy Peer.Set() and Peer.Get() APIs, used to share height state between the
- // consensus and mempool reactors. These dependencies should be removed from the
- // reactors, and instead query this information independently via new P2P
- // protocol additions.
- func (m *PeerManager) GetHeight(peerID NodeID) int64 {
- m.mtx.Lock()
- defer m.mtx.Unlock()
-
- peer, _ := m.store.Get(peerID)
- return peer.Height
- }
-
- // SetHeight stores a peer's height, making it available via GetHeight. If the
- // peer is unknown, it is created.
- //
- // FIXME: This is a temporary workaround for the peer state stored via the
- // legacy Peer.Set() and Peer.Get() APIs, used to share height state between the
- // consensus and mempool reactors. These dependencies should be removed from the
- // reactors, and instead query this information independently via new P2P
- // protocol additions.
- func (m *PeerManager) SetHeight(peerID NodeID, height int64) error {
- m.mtx.Lock()
- defer m.mtx.Unlock()
-
- peer, ok := m.store.Get(peerID)
- if !ok {
- peer = m.makePeerInfo(peerID)
- }
- peer.Height = height
- return m.store.Set(peer)
- }
-
- // peerStore stores information about peers. It is not thread-safe, assuming
- // it is used only by PeerManager which handles concurrency control, allowing
- // it to execute multiple operations atomically via its own mutex.
- //
- // The entire set of peers is kept in memory, for performance. It is loaded
- // from disk on initialization, and any changes are written back to disk
- // (without fsync, since we can afford to lose recent writes).
- type peerStore struct {
- db dbm.DB
- peers map[NodeID]*peerInfo
- ranked []*peerInfo // cache for Ranked(), nil invalidates cache
- }
-
- // newPeerStore creates a new peer store, loading all persisted peers from the
- // database into memory.
- func newPeerStore(db dbm.DB) (*peerStore, error) {
- store := &peerStore{
- db: db,
- }
- if err := store.loadPeers(); err != nil {
- return nil, err
- }
- return store, nil
- }
-
- // loadPeers loads all peers from the database into memory.
- func (s *peerStore) loadPeers() error {
- peers := make(map[NodeID]*peerInfo)
-
- start, end := keyPeerInfoRange()
- iter, err := s.db.Iterator(start, end)
- if err != nil {
- return err
- }
- defer iter.Close()
- for ; iter.Valid(); iter.Next() {
- // FIXME: We may want to tolerate failures here, by simply logging
- // the errors and ignoring the faulty peer entries.
- msg := new(p2pproto.PeerInfo)
- if err := proto.Unmarshal(iter.Value(), msg); err != nil {
- return fmt.Errorf("invalid peer Protobuf data: %w", err)
- }
- peer, err := peerInfoFromProto(msg)
- if err != nil {
- return fmt.Errorf("invalid peer data: %w", err)
- }
- peers[peer.ID] = peer
- }
- if iter.Error() != nil {
- return iter.Error()
- }
- s.peers = peers
- s.ranked = nil // invalidate cache if populated
- return nil
- }
-
- // Get fetches a peer. The boolean indicates whether the peer existed or not.
- // The returned peer info is a copy, and can be mutated at will.
- func (s *peerStore) Get(id NodeID) (peerInfo, bool) {
- peer, ok := s.peers[id]
- return peer.Copy(), ok
- }
-
- // Set stores peer data. The input data will be copied, and can safely be reused
- // by the caller.
- func (s *peerStore) Set(peer peerInfo) error {
- if err := peer.Validate(); err != nil {
- return err
- }
- peer = peer.Copy()
-
- // FIXME: We may want to optimize this by avoiding saving to the database
- // if there haven't been any changes to persisted fields.
- bz, err := peer.ToProto().Marshal()
- if err != nil {
- return err
- }
- if err = s.db.Set(keyPeerInfo(peer.ID), bz); err != nil {
- return err
- }
-
- if current, ok := s.peers[peer.ID]; !ok || current.Score() != peer.Score() {
- // If the peer is new, or its score changes, we invalidate the Ranked() cache.
- s.peers[peer.ID] = &peer
- s.ranked = nil
- } else {
- // Otherwise, since s.ranked contains pointers to the old data and we
- // want those pointers to remain valid with the new data, we have to
- // update the existing pointer address.
- *current = peer
- }
-
- return nil
- }
-
- // Delete deletes a peer, or does nothing if it does not exist.
- func (s *peerStore) Delete(id NodeID) error {
- if _, ok := s.peers[id]; !ok {
- return nil
- }
- if err := s.db.Delete(keyPeerInfo(id)); err != nil {
- return err
- }
- delete(s.peers, id)
- s.ranked = nil
- return nil
- }
-
- // List retrieves all peers in an arbitrary order. The returned data is a copy,
- // and can be mutated at will.
- func (s *peerStore) List() []peerInfo {
- peers := make([]peerInfo, 0, len(s.peers))
- for _, peer := range s.peers {
- peers = append(peers, peer.Copy())
- }
- return peers
- }
-
- // Ranked returns a list of peers ordered by score (better peers first). Peers
- // with equal scores are returned in an arbitrary order. The returned list must
- // not be mutated or accessed concurrently by the caller, since it returns
- // pointers to internal peerStore data for performance.
- //
- // Ranked is used to determine both which peers to dial, which ones to evict,
- // and which ones to delete completely.
- //
- // FIXME: For now, we simply maintain a cache in s.ranked which is invalidated
- // by setting it to nil, but if necessary we should use a better data structure
- // for this (e.g. a heap or ordered map).
- //
- // FIXME: The scoring logic is currently very naïve, see peerInfo.Score().
- func (s *peerStore) Ranked() []*peerInfo {
- if s.ranked != nil {
- return s.ranked
- }
- s.ranked = make([]*peerInfo, 0, len(s.peers))
- for _, peer := range s.peers {
- s.ranked = append(s.ranked, peer)
- }
- sort.Slice(s.ranked, func(i, j int) bool {
- // FIXME: If necessary, consider precomputing scores before sorting,
- // to reduce the number of Score() calls.
- return s.ranked[i].Score() > s.ranked[j].Score()
- })
- return s.ranked
- }
-
- // Size returns the number of peers in the peer store.
- func (s *peerStore) Size() int {
- return len(s.peers)
- }
-
- // peerInfo contains peer information stored in a peerStore.
- type peerInfo struct {
- ID NodeID
- AddressInfo map[string]*peerAddressInfo
- LastConnected time.Time
-
- // These fields are ephemeral, i.e. not persisted to the database.
- Persistent bool
- Height int64
- }
-
- // peerInfoFromProto converts a Protobuf PeerInfo message to a peerInfo,
- // erroring if the data is invalid.
- func peerInfoFromProto(msg *p2pproto.PeerInfo) (*peerInfo, error) {
- p := &peerInfo{
- ID: NodeID(msg.ID),
- AddressInfo: map[string]*peerAddressInfo{},
- }
- if msg.LastConnected != nil {
- p.LastConnected = *msg.LastConnected
- }
- for _, addr := range msg.AddressInfo {
- addressInfo, err := peerAddressInfoFromProto(addr)
- if err != nil {
- return nil, err
- }
- p.AddressInfo[addressInfo.Address.String()] = addressInfo
- }
- return p, p.Validate()
- }
-
- // ToProto converts the peerInfo to p2pproto.PeerInfo for database storage. The
- // Protobuf type only contains persisted fields, while ephemeral fields are
- // discarded. The returned message may contain pointers to original data, since
- // it is expected to be serialized immediately.
- func (p *peerInfo) ToProto() *p2pproto.PeerInfo {
- msg := &p2pproto.PeerInfo{
- ID: string(p.ID),
- LastConnected: &p.LastConnected,
- }
- for _, addressInfo := range p.AddressInfo {
- msg.AddressInfo = append(msg.AddressInfo, addressInfo.ToProto())
- }
- if msg.LastConnected.IsZero() {
- msg.LastConnected = nil
- }
- return msg
- }
-
- // Copy returns a deep copy of the peer info.
- func (p *peerInfo) Copy() peerInfo {
- if p == nil {
- return peerInfo{}
- }
- c := *p
- for i, addressInfo := range c.AddressInfo {
- addressInfoCopy := addressInfo.Copy()
- c.AddressInfo[i] = &addressInfoCopy
- }
- return c
- }
-
- // Score calculates a score for the peer. Higher-scored peers will be
- // preferred over lower scores.
- func (p *peerInfo) Score() PeerScore {
- var score PeerScore
- if p.Persistent {
- score += PeerScorePersistent
- }
- return score
- }
-
- // Validate validates the peer info.
- func (p *peerInfo) Validate() error {
- if p.ID == "" {
- return errors.New("no peer ID")
- }
- return nil
- }
-
- // peerAddressInfo contains information and statistics about a peer address.
- type peerAddressInfo struct {
- Address PeerAddress
- LastDialSuccess time.Time
- LastDialFailure time.Time
- DialFailures uint32 // since last successful dial
- }
-
- // peerAddressInfoFromProto converts a Protobuf PeerAddressInfo message
- // to a peerAddressInfo.
- func peerAddressInfoFromProto(msg *p2pproto.PeerAddressInfo) (*peerAddressInfo, error) {
- address, err := ParsePeerAddress(msg.Address)
- if err != nil {
- return nil, fmt.Errorf("invalid address %q: %w", address, err)
- }
- addressInfo := &peerAddressInfo{
- Address: address,
- DialFailures: msg.DialFailures,
- }
- if msg.LastDialSuccess != nil {
- addressInfo.LastDialSuccess = *msg.LastDialSuccess
- }
- if msg.LastDialFailure != nil {
- addressInfo.LastDialFailure = *msg.LastDialFailure
- }
- return addressInfo, addressInfo.Validate()
- }
-
- // ToProto converts the address into to a Protobuf message for serialization.
- func (a *peerAddressInfo) ToProto() *p2pproto.PeerAddressInfo {
- msg := &p2pproto.PeerAddressInfo{
- Address: a.Address.String(),
- LastDialSuccess: &a.LastDialSuccess,
- LastDialFailure: &a.LastDialFailure,
- DialFailures: a.DialFailures,
- }
- if msg.LastDialSuccess.IsZero() {
- msg.LastDialSuccess = nil
- }
- if msg.LastDialFailure.IsZero() {
- msg.LastDialFailure = nil
- }
- return msg
- }
-
- // Copy returns a copy of the address info.
- func (a *peerAddressInfo) Copy() peerAddressInfo {
- return *a
- }
-
- // Validate validates the address info.
- func (a *peerAddressInfo) Validate() error {
- return a.Address.Validate()
- }
-
- // These are database key prefixes.
- const (
- prefixPeerInfo int64 = 1
- )
-
- // keyPeerInfo generates a peerInfo database key.
- func keyPeerInfo(id NodeID) []byte {
- key, err := orderedcode.Append(nil, prefixPeerInfo, string(id))
- if err != nil {
- panic(err)
- }
- return key
- }
-
- // keyPeerInfoPrefix generates start/end keys for the entire peerInfo key range.
- func keyPeerInfoRange() ([]byte, []byte) {
- start, err := orderedcode.Append(nil, prefixPeerInfo, "")
- if err != nil {
- panic(err)
- }
- end, err := orderedcode.Append(nil, prefixPeerInfo, orderedcode.Infinity)
- if err != nil {
- panic(err)
- }
- return start, end
- }
-
- // ============================================================================
- // Types and business logic below may be deprecated.
- //
- // TODO: Rename once legacy p2p types are removed.
- // ref: https://github.com/tendermint/tendermint/issues/5670
- // ============================================================================
-
- //go:generate mockery --case underscore --name Peer
-
- const metricsTickerDuration = 10 * time.Second
-
- // Peer is an interface representing a peer connected on a reactor.
- type Peer interface {
- service.Service
- FlushStop()
-
- ID() NodeID // peer's cryptographic ID
- RemoteIP() net.IP // remote IP of the connection
- RemoteAddr() net.Addr // remote address of the connection
-
- IsOutbound() bool // did we dial the peer
- IsPersistent() bool // do we redial this peer when we disconnect
-
- CloseConn() error // close original connection
-
- NodeInfo() NodeInfo // peer's info
- Status() tmconn.ConnectionStatus
- SocketAddr() *NetAddress // actual address of the socket
-
- Send(byte, []byte) bool
- TrySend(byte, []byte) bool
-
- Set(string, interface{})
- Get(string) interface{}
- }
-
- //----------------------------------------------------------
-
- // peerConn contains the raw connection and its config.
- type peerConn struct {
- outbound bool
- persistent bool
- conn Connection
- ip net.IP // cached RemoteIP()
- }
-
- func newPeerConn(outbound, persistent bool, conn Connection) peerConn {
- return peerConn{
- outbound: outbound,
- persistent: persistent,
- conn: conn,
- }
- }
-
- // ID only exists for SecretConnection.
- func (pc peerConn) ID() NodeID {
- return NodeIDFromPubKey(pc.conn.PubKey())
- }
-
- // Return the IP from the connection RemoteAddr
- func (pc peerConn) RemoteIP() net.IP {
- if pc.ip == nil {
- pc.ip = pc.conn.RemoteEndpoint().IP
- }
- return pc.ip
- }
-
- // peer implements Peer.
- //
- // Before using a peer, you will need to perform a handshake on connection.
- type peer struct {
- service.BaseService
-
- // raw peerConn and the multiplex connection
- peerConn
-
- // peer's node info and the channel it knows about
- // channels = nodeInfo.Channels
- // cached to avoid copying nodeInfo in hasChannel
- nodeInfo NodeInfo
- channels []byte
- reactors map[byte]Reactor
- onPeerError func(Peer, interface{})
-
- // User data
- Data *cmap.CMap
-
- metrics *Metrics
- metricsTicker *time.Ticker
- }
-
- type PeerOption func(*peer)
-
- func newPeer(
- pc peerConn,
- reactorsByCh map[byte]Reactor,
- onPeerError func(Peer, interface{}),
- options ...PeerOption,
- ) *peer {
- nodeInfo := pc.conn.NodeInfo()
- p := &peer{
- peerConn: pc,
- nodeInfo: nodeInfo,
- channels: nodeInfo.Channels, // TODO
- reactors: reactorsByCh,
- onPeerError: onPeerError,
- Data: cmap.NewCMap(),
- metricsTicker: time.NewTicker(metricsTickerDuration),
- metrics: NopMetrics(),
- }
-
- p.BaseService = *service.NewBaseService(nil, "Peer", p)
- for _, option := range options {
- option(p)
- }
-
- return p
- }
-
- // onError calls the peer error callback.
- func (p *peer) onError(err interface{}) {
- p.onPeerError(p, err)
- }
-
- // String representation.
- func (p *peer) String() string {
- if p.outbound {
- return fmt.Sprintf("Peer{%v %v out}", p.conn, p.ID())
- }
-
- return fmt.Sprintf("Peer{%v %v in}", p.conn, p.ID())
- }
-
- //---------------------------------------------------
- // Implements service.Service
-
- // SetLogger implements BaseService.
- func (p *peer) SetLogger(l log.Logger) {
- p.Logger = l
- }
-
- // OnStart implements BaseService.
- func (p *peer) OnStart() error {
- if err := p.BaseService.OnStart(); err != nil {
- return err
- }
-
- go p.processMessages()
- go p.metricsReporter()
-
- return nil
- }
-
- // processMessages processes messages received from the connection.
- func (p *peer) processMessages() {
- defer func() {
- if r := recover(); r != nil {
- p.Logger.Error("peer message processing panic", "err", r, "stack", string(debug.Stack()))
- p.onError(fmt.Errorf("panic during peer message processing: %v", r))
- }
- }()
-
- for {
- chID, msg, err := p.conn.ReceiveMessage()
- if err != nil {
- p.onError(err)
- return
- }
- reactor, ok := p.reactors[chID]
- if !ok {
- p.onError(fmt.Errorf("unknown channel %v", chID))
- return
- }
- reactor.Receive(chID, p, msg)
- }
- }
-
- // FlushStop mimics OnStop but additionally ensures that all successful
- // .Send() calls will get flushed before closing the connection.
- // NOTE: it is not safe to call this method more than once.
- func (p *peer) FlushStop() {
- p.metricsTicker.Stop()
- p.BaseService.OnStop()
- if err := p.conn.FlushClose(); err != nil {
- p.Logger.Debug("error while stopping peer", "err", err)
- }
- }
-
- // OnStop implements BaseService.
- func (p *peer) OnStop() {
- p.metricsTicker.Stop()
- p.BaseService.OnStop()
- if err := p.conn.Close(); err != nil {
- p.Logger.Debug("error while stopping peer", "err", err)
- }
- }
-
- //---------------------------------------------------
- // Implements Peer
-
- // ID returns the peer's ID - the hex encoded hash of its pubkey.
- func (p *peer) ID() NodeID {
- return p.nodeInfo.ID()
- }
-
- // IsOutbound returns true if the connection is outbound, false otherwise.
- func (p *peer) IsOutbound() bool {
- return p.peerConn.outbound
- }
-
- // IsPersistent returns true if the peer is persitent, false otherwise.
- func (p *peer) IsPersistent() bool {
- return p.peerConn.persistent
- }
-
- // NodeInfo returns a copy of the peer's NodeInfo.
- func (p *peer) NodeInfo() NodeInfo {
- return p.nodeInfo
- }
-
- // SocketAddr returns the address of the socket.
- // For outbound peers, it's the address dialed (after DNS resolution).
- // For inbound peers, it's the address returned by the underlying connection
- // (not what's reported in the peer's NodeInfo).
- func (p *peer) SocketAddr() *NetAddress {
- return p.peerConn.conn.RemoteEndpoint().NetAddress()
- }
-
- // Status returns the peer's ConnectionStatus.
- func (p *peer) Status() tmconn.ConnectionStatus {
- return p.conn.Status()
- }
-
- // Send msg bytes to the channel identified by chID byte. Returns false if the
- // send queue is full after timeout, specified by MConnection.
- func (p *peer) Send(chID byte, msgBytes []byte) bool {
- if !p.IsRunning() {
- // see Switch#Broadcast, where we fetch the list of peers and loop over
- // them - while we're looping, one peer may be removed and stopped.
- return false
- } else if !p.hasChannel(chID) {
- return false
- }
- res, err := p.conn.SendMessage(chID, msgBytes)
- if err == io.EOF {
- return false
- } else if err != nil {
- p.onError(err)
- return false
- }
- if res {
- labels := []string{
- "peer_id", string(p.ID()),
- "chID", fmt.Sprintf("%#x", chID),
- }
- p.metrics.PeerSendBytesTotal.With(labels...).Add(float64(len(msgBytes)))
- }
- return res
- }
-
- // TrySend msg bytes to the channel identified by chID byte. Immediately returns
- // false if the send queue is full.
- func (p *peer) TrySend(chID byte, msgBytes []byte) bool {
- if !p.IsRunning() {
- return false
- } else if !p.hasChannel(chID) {
- return false
- }
- res, err := p.conn.TrySendMessage(chID, msgBytes)
- if err == io.EOF {
- return false
- } else if err != nil {
- p.onError(err)
- return false
- }
- if res {
- labels := []string{
- "peer_id", string(p.ID()),
- "chID", fmt.Sprintf("%#x", chID),
- }
- p.metrics.PeerSendBytesTotal.With(labels...).Add(float64(len(msgBytes)))
- }
- return res
- }
-
- // Get the data for a given key.
- func (p *peer) Get(key string) interface{} {
- return p.Data.Get(key)
- }
-
- // Set sets the data for the given key.
- func (p *peer) Set(key string, data interface{}) {
- p.Data.Set(key, data)
- }
-
- // hasChannel returns true if the peer reported
- // knowing about the given chID.
- func (p *peer) hasChannel(chID byte) bool {
- for _, ch := range p.channels {
- if ch == chID {
- return true
- }
- }
- // NOTE: probably will want to remove this
- // but could be helpful while the feature is new
- p.Logger.Debug(
- "Unknown channel for peer",
- "channel",
- chID,
- "channels",
- p.channels,
- )
- return false
- }
-
- // CloseConn closes original connection. Used for cleaning up in cases where the peer had not been started at all.
- func (p *peer) CloseConn() error {
- return p.peerConn.conn.Close()
- }
-
- //---------------------------------------------------
- // methods only used for testing
- // TODO: can we remove these?
-
- // CloseConn closes the underlying connection
- func (pc *peerConn) CloseConn() {
- pc.conn.Close()
- }
-
- // RemoteAddr returns peer's remote network address.
- func (p *peer) RemoteAddr() net.Addr {
- endpoint := p.conn.RemoteEndpoint()
- return &net.TCPAddr{
- IP: endpoint.IP,
- Port: int(endpoint.Port),
- }
- }
-
- //---------------------------------------------------
-
- func PeerMetrics(metrics *Metrics) PeerOption {
- return func(p *peer) {
- p.metrics = metrics
- }
- }
-
- func (p *peer) metricsReporter() {
- for {
- select {
- case <-p.metricsTicker.C:
- status := p.conn.Status()
- var sendQueueSize float64
- for _, chStatus := range status.Channels {
- sendQueueSize += float64(chStatus.SendQueueSize)
- }
-
- p.metrics.PeerPendingSendBytes.With("peer_id", string(p.ID())).Set(sendQueueSize)
- case <-p.Quit():
- return
- }
- }
- }
|