from nd2reader.model.image import Image
|
|
import numpy as np
|
|
import unittest
|
|
|
|
|
|
class ImageTests(unittest.TestCase):
|
|
"""
|
|
Basically just tests that the Image API works and that Images act as Numpy arrays. There's very little going on
|
|
here other than simply storing data.
|
|
|
|
"""
|
|
def setUp(self):
|
|
array = np.array([[0, 1, 254],
|
|
[45, 12, 9],
|
|
[12, 12, 99]])
|
|
self.image = Image(array)
|
|
self.image.add_params(1200.314, 17, 2, 'GFP', 1)
|
|
|
|
def test_size(self):
|
|
self.assertEqual(self.image.height, 3)
|
|
self.assertEqual(self.image.width, 3)
|
|
|
|
def test_timestamp(self):
|
|
self.assertEqual(self.image.timestamp, 1.200314)
|
|
|
|
def test_frame_number(self):
|
|
self.assertEqual(self.image.frame_number, 17)
|
|
|
|
def test_fov(self):
|
|
self.assertEqual(self.image.field_of_view, 2)
|
|
|
|
def test_channel(self):
|
|
self.assertEqual(self.image.channel, 'GFP')
|
|
|
|
def test_z_level(self):
|
|
self.assertEqual(self.image.z_level, 1)
|
|
|
|
def test_slice(self):
|
|
subimage = self.image[:2, :2]
|
|
expected = np.array([[0, 1],
|
|
[45, 12]])
|
|
self.assertTrue(np.array_equal(subimage, expected))
|