@ -1,4 +1,4 @@ | |||||
[submodule "docs"] | [submodule "docs"] | ||||
path = docs | path = docs | ||||
url = https://github.com/rbnvrw/nd2reader.git | |||||
url = git@github.com:rbnvrw/nd2reader.git | |||||
branch = gh-pages | branch = gh-pages |
@ -1 +1 @@ | |||||
Subproject commit f700c239f8f9d7d1f99a3c10d9f67e2b3b8ef307 | |||||
Subproject commit 42dbfdf18e0ed7656ef73ac66e889c3138ef756f |
@ -1,119 +0,0 @@ | |||||
# Tutorial | |||||
### Installation | |||||
The package is available on PyPi. Install it using: | |||||
``` | |||||
pip install nd2reader | |||||
``` | |||||
If you don't already have the packages `numpy`, `pims`, `six` and `xmltodict`, they will be installed automatically if you use the `setup.py` script. | |||||
`nd2reader` is an order of magnitude faster in Python 3. I recommend using it unless you have no other choice. Python 2.7 and Python >= 3.4 are supported. | |||||
#### Installation via Conda Forge | |||||
Installing `nd2reader` from the `conda-forge` channel can be achieved by adding `conda-forge` to your channels with: | |||||
``` | |||||
conda config --add channels conda-forge | |||||
``` | |||||
Once the `conda-forge` channel has been enabled, `nd2reader` can be installed with: | |||||
``` | |||||
conda install nd2reader | |||||
``` | |||||
It is possible to list all of the versions of `nd2reader` available on your platform with: | |||||
``` | |||||
conda search nd2reader --channel conda-forge | |||||
``` | |||||
### Opening ND2s | |||||
`nd2reader` follows the [pims](https://github.com/soft-matter/pims) framework. To open a file and show the first frame: | |||||
```python | |||||
from nd2reader import ND2Reader | |||||
import matplotlib.pyplot as plt | |||||
with ND2Reader('my_directory/example.nd2') as images: | |||||
plt.imshow(images[0]) | |||||
``` | |||||
After opening the file, all `pims` features are supported. Please refer to the [pims documentation](http://soft-matter.github.io/pims/). | |||||
### ND2 metadata | |||||
The ND2 file contains various metadata, such as acquisition information, | |||||
regions of interest and custom user comments. Most of this metadata is parsed | |||||
and available in dictionary form. For example: | |||||
```python | |||||
from nd2reader import ND2Reader | |||||
with ND2Reader('my_directory/example.nd2') as images: | |||||
# width and height of the image | |||||
print('%d x %d px' % (images.metadata['width'], images.metadata['height'])) | |||||
``` | |||||
All metadata properties are: | |||||
* `width`: the width of the image in pixels | |||||
* `height`: the height of the image in pixels | |||||
* `date`: the date the image was taken | |||||
* `fields_of_view`: the fields of view in the image | |||||
* `frames`: a list of all frame numbers | |||||
* `z_levels`: the z levels in the image | |||||
* `total_images_per_channel`: the number of images per color channel | |||||
* `channels`: the color channels | |||||
* `pixel_microns`: the amount of microns per pixel | |||||
* `rois`: the regions of interest (ROIs) defined by the user | |||||
* `experiment`: information about the nature and timings of the ND experiment | |||||
### Iterating over fields of view | |||||
Using `NDExperiments` in the Nikon software, it is possible to acquire images on different `(x, y)` positions. | |||||
This is referred to as different fields of view. Using this reader, the fields of view are on the `v` axis. | |||||
For example: | |||||
```python | |||||
from nd2reader import ND2Reader | |||||
with ND2Reader('my_directory/example.nd2') as images: | |||||
# width and height of the image | |||||
print(images.metadata) | |||||
``` | |||||
will output | |||||
```python | |||||
{'channels': ['BF100xoil-1x-R', 'BF+RITC'], | |||||
'date': datetime.datetime(2017, 10, 30, 14, 35, 18), | |||||
'experiment': {'description': 'ND Acquisition', | |||||
'loops': [{'duration': 0, | |||||
'sampling_interval': 0.0, | |||||
'start': 0, | |||||
'stimulation': False}]}, | |||||
'fields_of_view': [0, 1], | |||||
'frames': [0], | |||||
'height': 1895, | |||||
'num_frames': 1, | |||||
'pixel_microns': 0.09214285714285715, | |||||
'total_images_per_channel': 6, | |||||
'width': 2368, | |||||
'z_levels': [0, 1, 2]} | |||||
``` | |||||
for our example file. As you can see from the metadata, it has two fields of view. We can also look at the sizes of the axes: | |||||
```python | |||||
print(images.sizes) | |||||
``` | |||||
```python | |||||
{'c': 2, 't': 1, 'v': 2, 'x': 2368, 'y': 1895, 'z': 3} | |||||
``` | |||||
As you can see, the fields of view are listed on the `v` axis. It is therefore possible to loop over them like this: | |||||
```python | |||||
images.iter_axes = 'v' | |||||
for fov in images: | |||||
print(fov) # Frame containing one field of view | |||||
``` | |||||
For more information on axis bundling and iteration, refer to the [pims documentation](http://soft-matter.github.io/pims/v0.4/multidimensional.html#axes-bundling). |
@ -0,0 +1,148 @@ | |||||
Tutorial | |||||
======== | |||||
Installation | |||||
~~~~~~~~~~~~ | |||||
The package is available on PyPi. Install it using: | |||||
:: | |||||
pip install nd2reader | |||||
If you don't already have the packages ``numpy``, ``pims``, ``six`` and | |||||
``xmltodict``, they will be installed automatically if you use the | |||||
``setup.py`` script. ``nd2reader`` is an order of magnitude faster in | |||||
Python 3. I recommend using it unless you have no other choice. Python | |||||
2.7 and Python >= 3.4 are supported. | |||||
Installation via Conda Forge | |||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |||||
Installing ``nd2reader`` from the ``conda-forge`` channel can be | |||||
achieved by adding ``conda-forge`` to your channels with: | |||||
:: | |||||
conda config --add channels conda-forge | |||||
Once the ``conda-forge`` channel has been enabled, ``nd2reader`` can be | |||||
installed with: | |||||
:: | |||||
conda install nd2reader | |||||
It is possible to list all of the versions of ``nd2reader`` available on | |||||
your platform with: | |||||
:: | |||||
conda search nd2reader --channel conda-forge | |||||
Opening ND2s | |||||
~~~~~~~~~~~~ | |||||
``nd2reader`` follows the `pims <https://github.com/soft-matter/pims>`__ | |||||
framework. To open a file and show the first frame: | |||||
.. code:: python | |||||
from nd2reader import ND2Reader | |||||
import matplotlib.pyplot as plt | |||||
with ND2Reader('my_directory/example.nd2') as images: | |||||
plt.imshow(images[0]) | |||||
After opening the file, all ``pims`` features are supported. Please | |||||
refer to the `pims | |||||
documentation <http://soft-matter.github.io/pims/>`__. | |||||
ND2 metadata | |||||
~~~~~~~~~~~~ | |||||
The ND2 file contains various metadata, such as acquisition information, | |||||
regions of interest and custom user comments. Most of this metadata is | |||||
parsed and available in dictionary form. For example: | |||||
.. code:: python | |||||
from nd2reader import ND2Reader | |||||
with ND2Reader('my_directory/example.nd2') as images: | |||||
# width and height of the image | |||||
print('%d x %d px' % (images.metadata['width'], images.metadata['height'])) | |||||
All metadata properties are: | |||||
- ``width``: the width of the image in pixels | |||||
- ``height``: the height of the image in pixels | |||||
- ``date``: the date the image was taken | |||||
- ``fields_of_view``: the fields of view in the image | |||||
- ``frames``: a list of all frame numbers | |||||
- ``z_levels``: the z levels in the image | |||||
- ``total_images_per_channel``: the number of images per color channel | |||||
- ``channels``: the color channels | |||||
- ``pixel_microns``: the amount of microns per pixel | |||||
- ``rois``: the regions of interest (ROIs) defined by the user | |||||
- ``experiment``: information about the nature and timings of the ND | |||||
experiment | |||||
Iterating over fields of view | |||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |||||
Using ``NDExperiments`` in the Nikon software, it is possible to acquire | |||||
images on different ``(x, y)`` positions. This is referred to as | |||||
different fields of view. Using this reader, the fields of view are on | |||||
the ``v`` axis. For example: | |||||
.. code:: python | |||||
from nd2reader import ND2Reader | |||||
with ND2Reader('my_directory/example.nd2') as images: | |||||
# width and height of the image | |||||
print(images.metadata) | |||||
will output | |||||
.. code:: python | |||||
{'channels': ['BF100xoil-1x-R', 'BF+RITC'], | |||||
'date': datetime.datetime(2017, 10, 30, 14, 35, 18), | |||||
'experiment': {'description': 'ND Acquisition', | |||||
'loops': [{'duration': 0, | |||||
'sampling_interval': 0.0, | |||||
'start': 0, | |||||
'stimulation': False}]}, | |||||
'fields_of_view': [0, 1], | |||||
'frames': [0], | |||||
'height': 1895, | |||||
'num_frames': 1, | |||||
'pixel_microns': 0.09214285714285715, | |||||
'total_images_per_channel': 6, | |||||
'width': 2368, | |||||
'z_levels': [0, 1, 2]} | |||||
for our example file. As you can see from the metadata, it has two | |||||
fields of view. We can also look at the sizes of the axes: | |||||
.. code:: python | |||||
print(images.sizes) | |||||
.. code:: python | |||||
{'c': 2, 't': 1, 'v': 2, 'x': 2368, 'y': 1895, 'z': 3} | |||||
As you can see, the fields of view are listed on the ``v`` axis. It is | |||||
therefore possible to loop over them like this: | |||||
.. code:: python | |||||
images.iter_axes = 'v' | |||||
for fov in images: | |||||
print(fov) # Frame containing one field of view | |||||
For more information on axis bundling and iteration, refer to the `pims | |||||
documentation <http://soft-matter.github.io/pims/v0.4/multidimensional.html#axes-bundling>`__. |