|
|
- # -*- coding: utf-8 -*-
-
- import array
- import numpy as np
- import struct
- from nd2reader.model.image import Image
- from nd2reader.common.v3 import read_chunk
- from nd2reader.exc import NoImageError
-
-
- class V3Driver(object):
- """
- Accesses images from ND2 files made with NIS Elements 4.x. Confusingly, files of this type have a version number of 3.0+.
-
- """
- def __init__(self, metadata, label_map, file_handle):
- """
- :param metadata: a Metadata object
- :param label_map: a raw dictionary of pointers to image locations
- :param file_handle: an open file handle to the ND2
-
- """
- self._metadata = metadata
- self._label_map = label_map
- self._file_handle = file_handle
-
- def calculate_image_properties(self, index):
- field_of_view = self._calculate_field_of_view(index)
- channel = self._calculate_channel(index)
- z_level = self._calculate_z_level(index)
- return field_of_view, channel, z_level
-
- def get_image(self, index):
- """
- Creates an Image object and adds its metadata, based on the index (which is simply the order in which the image was acquired). May return None if the ND2 contains
- multiple channels and not all were taken in each cycle (for example, if you take bright field images every minute, and GFP images every five minutes, there will be some
- indexes that do not contain an image. The reason for this is complicated, but suffice it to say that we hope to eliminate this possibility in future releases. For now,
- you'll need to check if your image is None if you're doing anything out of the ordinary.
-
- :type index: int
- :rtype: Image or None
-
- """
- field_of_view, channel, z_level = self.calculate_image_properties(index)
- channel_offset = index % len(self._metadata.channels)
- image_group_number = int(index / len(self._metadata.channels))
- frame_number = self._calculate_frame_number(image_group_number, field_of_view, z_level)
- try:
- timestamp, image = self._get_raw_image_data(image_group_number, channel_offset, self._metadata.height, self._metadata.width)
- except NoImageError:
- return None
- else:
- image.add_params(index, timestamp, frame_number, field_of_view, channel, z_level)
- return image
-
- def get_image_by_attributes(self, frame_number, field_of_view, channel_name, z_level, height, width):
- """
- Attempts to get Image based on attributes alone.
-
- :type frame_number: int
- :type field_of_view: int
- :type channel_name: str
- :type z_level: int
- :type height: int
- :type width: int
-
- :rtype: Image or None
- """
- image_group_number = self._calculate_image_group_number(frame_number, field_of_view, z_level)
- try:
- timestamp, raw_image_data = self._get_raw_image_data(image_group_number,
- self._channel_offset[channel_name],
- height,
- width)
- image = Image(raw_image_data)
- image.add_params(image_group_number, timestamp, frame_number, field_of_view, channel_name, z_level)
- except (TypeError, NoImageError):
- return None
- else:
- return image
-
- def _calculate_field_of_view(self, index):
- """
- Determines what field of view was being imaged for a given image.
-
- :type index: int
- :rtype: int
-
- """
- images_per_cycle = len(self._metadata.z_levels) * len(self._metadata.channels)
- return int((index - (index % images_per_cycle)) / images_per_cycle) % len(self._metadata.fields_of_view)
-
- def _calculate_channel(self, index):
- """
- Determines what channel a particular image is.
-
- :type index: int
- :rtype: str
-
- """
- return self._metadata.channels[index % len(self._metadata.channels)]
-
- def _calculate_z_level(self, index):
- """
- Determines the plane in the z-axis a given image was taken in. In the future, this will be replaced with the actual offset in micrometers.
-
- :type index: int
- :rtype: int
- """
- return self._metadata.z_levels[int(((index - (index % len(self._metadata.channels))) / len(self._metadata.channels)) % len(self._metadata.z_levels))]
-
- def _calculate_image_group_number(self, frame_number, fov, z_level):
- """
- Images are grouped together if they share the same time index, field of view, and z-level.
-
- :type frame_number: int
- :type fov: int
- :type z_level: int
-
- :rtype: int
-
- """
- return frame_number * len(self._metadata.fields_of_view) * len(self._metadata.z_levels) + (fov * len(self._metadata.z_levels) + z_level)
-
- def _calculate_frame_number(self, image_group_number, field_of_view, z_level):
- """
- Images are in the same frame if they share the same group number and field of view and are taken sequentially.
-
- :type image_group_number: int
- :type field_of_view: int
- :type z_level: int
-
- :rtype: int
-
- """
- return (image_group_number - (field_of_view * len(self._metadata.z_levels) + z_level)) / (len(self._metadata.fields_of_view) * len(self._metadata.z_levels))
-
- @property
- def _channel_offset(self):
- """
- Image data is interleaved for each image set. That is, if there are four images in a set, the first image
- will consist of pixels 1, 5, 9, etc, the second will be pixels 2, 6, 10, and so forth.
-
- :rtype: dict
-
- """
- return {channel: n for n, channel in enumerate(self._metadata.channels)}
-
- def _get_raw_image_data(self, image_group_number, channel_offset, height, width):
- """
- Reads the raw bytes and the timestamp of an image.
-
- :param image_group_number: groups are made of images with the same time index, field of view and z-level
- :type image_group_number: int
- :param channel_offset: the offset in the array where the bytes for this image are found
- :type channel_offset: int
-
- :rtype: (int, Image)
- :raises: NoImageError
-
- """
- chunk = self._label_map.get_image_data_location(image_group_number)
- data = read_chunk(self._file_handle, chunk)
- # print("data", data, "that was data")
- # All images in the same image group share the same timestamp! So if you have complicated image data,
- # your timestamps may not be entirely accurate. Practically speaking though, they'll only be off by a few
- # seconds unless you're doing something super weird.
- timestamp = struct.unpack("d", data[:8])[0]
- image_group_data = array.array("H", data)
- image_data_start = 4 + channel_offset
-
- # The images for the various channels are interleaved within the same array. For example, the second image
- # of a four image group will be composed of bytes 2, 6, 10, etc. If you understand why someone would design
- # a data structure that way, please send the author of this library a message.
-
- image_data = np.reshape(image_group_data[image_data_start::len(self._metadata.channels)], (height, width))
-
- # Skip images that are all zeros! This is important, since NIS Elements creates blank "gap" images if you
- # don't have the same number of images each cycle. We discovered this because we only took GFP images every
- # other cycle to reduce phototoxicity, but NIS Elements still allocated memory as if we were going to take
- # them every cycle.
- if np.any(image_data):
- return timestamp, Image(image_data)
- raise NoImageError
|