|
|
- # -*- coding: utf-8 -*-
-
- import array
- from datetime import datetime
- import logging
- from nd2reader.model import Image, ImageSet
- from nd2reader.parser import Nd2Parser
- import re
- import struct
-
- log = logging.getLogger(__name__)
- log.addHandler(logging.StreamHandler())
- log.setLevel(logging.DEBUG)
-
-
- class Nd2(Nd2Parser):
- def __init__(self, filename, image_sets=False):
- super(Nd2, self).__init__(filename)
- self._use_image_sets = image_sets
-
- def __iter__(self):
- for i in range(self._image_count):
- for fov in range(self.field_of_view_count):
- for z_level in range(self.z_level_count):
- for channel_name in self.channels:
- image = self.get_image(i, fov, channel_name, z_level)
- if image.is_valid:
- yield image
-
- @property
- def image_sets(self):
- for time_index in xrange(self.time_index_count):
- image_set = ImageSet()
- for fov in range(self.field_of_view_count):
- for channel_name in self.channels:
- for z_level in xrange(self.z_level_count):
- image = self.get_image(time_index, fov, channel_name, z_level)
- if image.is_valid:
- image_set.add(image)
- yield image_set
-
- def get_image(self, time_index, fov, channel_name, z_level):
- image_set_number = self._calculate_image_set_number(time_index, fov, z_level)
- timestamp, raw_image_data = self._get_raw_image_data(image_set_number, self._channel_offset[channel_name])
- return Image(timestamp, raw_image_data, fov, channel_name, z_level, self.height, self.width)
-
- @property
- def channels(self):
- metadata = self.metadata['ImageMetadataSeq']['SLxPictureMetadata']['sPicturePlanes']
- try:
- validity = self.metadata['ImageMetadata']['SLxExperiment']['ppNextLevelEx'][''][0]['ppNextLevelEx'][''][0]['pItemValid']
- except KeyError:
- # If none of the channels have been deleted, there is no validity list, so we just make one
- validity = [True for _ in metadata]
- # Channel information is contained in dictionaries with the keys a0, a1...an where the number
- # indicates the order in which the channel is stored. So by sorting the dicts alphabetically
- # we get the correct order.
- for (label, chan), valid in zip(sorted(metadata['sPlaneNew'].items()), validity):
- if not valid:
- continue
- yield chan['sDescription']
-
- @property
- def height(self):
- """
- :return: height of each image, in pixels
-
- """
- return self.metadata['ImageAttributes']['SLxImageAttributes']['uiHeight']
-
- @property
- def width(self):
- """
- :return: width of each image, in pixels
-
- """
- return self.metadata['ImageAttributes']['SLxImageAttributes']['uiWidth']
-
- @property
- def absolute_start(self):
- for line in self.metadata['ImageTextInfo']['SLxImageTextInfo'].values():
- absolute_start_12 = None
- absolute_start_24 = None
- # ND2s seem to randomly switch between 12- and 24-hour representations.
- try:
- absolute_start_24 = datetime.strptime(line, "%m/%d/%Y %H:%M:%S")
- except ValueError:
- pass
- try:
- absolute_start_12 = datetime.strptime(line, "%m/%d/%Y %I:%M:%S %p")
- except ValueError:
- pass
- if not absolute_start_12 and not absolute_start_24:
- continue
- return absolute_start_12 if absolute_start_12 else absolute_start_24
- raise ValueError("This ND2 has no recorded start time. This is probably a bug.")
-
- @property
- def channel_count(self):
- pattern = r""".*?λ\((\d+)\).*?"""
- try:
- count = int(re.match(pattern, self._dimensions).group(1))
- except AttributeError:
- return 1
- else:
- return count
-
- @property
- def field_of_view_count(self):
- """
- The metadata contains information about fields of view, but it contains it even if some fields
- of view were cropped. We can't find anything that states which fields of view are actually
- in the image data, so we have to calculate it. There probably is something somewhere, since
- NIS Elements can figure it out, but we haven't found it yet.
-
- """
- pattern = r""".*?XY\((\d+)\).*?"""
- try:
- count = int(re.match(pattern, self._dimensions).group(1))
- except AttributeError:
- return 1
- else:
- return count
-
- @property
- def time_index_count(self):
- """
- The number of image sets. If images were acquired using some kind of cycle, all images at each step in the
- program will have the same timestamp (even though they may have varied by a few seconds in reality). For example,
- if you have four fields of view that you're constantly monitoring, and you take a bright field and GFP image of
- each, and you repeat that process 100 times, you'll have 800 individual images. But there will only be 400
- time indexes.
-
- :rtype: int
-
- """
- pattern = r""".*?T'\((\d+)\).*?"""
- try:
- count = int(re.match(pattern, self._dimensions).group(1))
- except AttributeError:
- return 1
- else:
- return count
-
- @property
- def z_level_count(self):
- pattern = r""".*?Z\((\d+)\).*?"""
- try:
- count = int(re.match(pattern, self._dimensions).group(1))
- except AttributeError:
- return 1
- else:
- return count
-
- @property
- def _channel_offset(self):
- """
- Image data is interleaved for each image set. That is, if there are four images in a set, the first image
- will consist of pixels 1, 5, 9, etc, the second will be pixels 2, 6, 10, and so forth. Why this would be the
- case is beyond me, but that's how it works.
-
- """
- channel_offset = {}
- for n, channel in enumerate(self.channels):
- channel_offset[channel] = n
- return channel_offset
-
- def _get_raw_image_data(self, image_set_number, channel_offset):
- chunk = self._label_map["ImageDataSeq|%d!" % image_set_number]
- data = self._read_chunk(chunk)
- timestamp = struct.unpack("d", data[:8])[0]
- # The images for the various channels are interleaved within each other.
- image_data = array.array("H", data)
- image_data_start = 4 + channel_offset
- return timestamp, image_data[image_data_start::self.channel_count]
-
- def _calculate_image_set_number(self, time_index, fov, z_level):
- return time_index * self.field_of_view_count * self.z_level_count + (fov * self.z_level_count + z_level)
|