|
|
- __all__ = ['aes_encrypt', 'key_expansion', 'aes_ctr_decrypt', 'aes_decrypt_text']
-
- import base64
- from math import ceil
-
- BLOCK_SIZE_BYTES = 16
-
- def aes_ctr_decrypt(data, key, counter):
- """
- Decrypt with aes in counter mode
-
- @param {int[]} data cipher
- @param {int[]} key 16/24/32-Byte cipher key
- @param {instance} counter Instance whose next_value function (@returns {int[]} 16-Byte block)
- returns the next counter block
- @returns {int[]} decrypted data
- """
- expanded_key = key_expansion(key)
- block_count = int(ceil(float(len(data)) / BLOCK_SIZE_BYTES))
-
- decrypted_data=[]
- for i in range(block_count):
- counter_block = counter.next_value()
- block = data[i*BLOCK_SIZE_BYTES : (i+1)*BLOCK_SIZE_BYTES]
- block += [0]*(BLOCK_SIZE_BYTES - len(block))
-
- cipher_counter_block = aes_encrypt(counter_block, expanded_key)
- decrypted_data += xor(block, cipher_counter_block)
- decrypted_data = decrypted_data[:len(data)]
-
- return decrypted_data
-
- def key_expansion(data):
- """
- Generate key schedule
-
- @param {int[]} data 16/24/32-Byte cipher key
- @returns {int[]} 176/208/240-Byte expanded key
- """
- data = data[:] # copy
- rcon_iteration = 1
- key_size_bytes = len(data)
- expanded_key_size_bytes = (key_size_bytes/4 + 7) * BLOCK_SIZE_BYTES
-
- while len(data) < expanded_key_size_bytes:
- temp = data[-4:]
- temp = key_schedule_core(temp, rcon_iteration)
- rcon_iteration += 1
- data += xor(temp, data[-key_size_bytes : 4-key_size_bytes])
-
- for _ in range(3):
- temp = data[-4:]
- data += xor(temp, data[-key_size_bytes : 4-key_size_bytes])
-
- if key_size_bytes == 32:
- temp = data[-4:]
- temp = sub_bytes(temp)
- data += xor(temp, data[-key_size_bytes : 4-key_size_bytes])
-
- for _ in range(3 if key_size_bytes == 32 else 2 if key_size_bytes == 24 else 0):
- temp = data[-4:]
- data += xor(temp, data[-key_size_bytes : 4-key_size_bytes])
- data = data[:expanded_key_size_bytes]
-
- return data
-
- def aes_encrypt(data, expanded_key):
- """
- Encrypt one block with aes
-
- @param {int[]} data 16-Byte state
- @param {int[]} expanded_key 176/208/240-Byte expanded key
- @returns {int[]} 16-Byte cipher
- """
- rounds = len(expanded_key) / BLOCK_SIZE_BYTES - 1
-
- data = xor(data, expanded_key[:BLOCK_SIZE_BYTES])
- for i in range(1, rounds+1):
- data = sub_bytes(data)
- data = shift_rows(data)
- if i != rounds:
- data = mix_columns(data)
- data = xor(data, expanded_key[i*BLOCK_SIZE_BYTES : (i+1)*BLOCK_SIZE_BYTES])
-
- return data
-
- def aes_decrypt_text(data, password, key_size_bytes):
- """
- Decrypt text
- - The first 8 Bytes of decoded 'data' are the 8 high Bytes of the counter
- - The cipher key is retrieved by encrypting the first 16 Byte of 'password'
- with the first 'key_size_bytes' Bytes from 'password' (if necessary filled with 0's)
- - Mode of operation is 'counter'
-
- @param {str} data Base64 encoded string
- @param {str,unicode} password Password (will be encoded with utf-8)
- @param {int} key_size_bytes Possible values: 16 for 128-Bit, 24 for 192-Bit or 32 for 256-Bit
- @returns {str} Decrypted data
- """
- NONCE_LENGTH_BYTES = 8
-
- data = map(lambda c: ord(c), base64.b64decode(data))
- password = map(lambda c: ord(c), password.encode('utf-8'))
-
- key = password[:key_size_bytes] + [0]*(key_size_bytes - len(password))
- key = aes_encrypt(key[:BLOCK_SIZE_BYTES], key_expansion(key)) * (key_size_bytes / BLOCK_SIZE_BYTES)
-
- nonce = data[:NONCE_LENGTH_BYTES]
- cipher = data[NONCE_LENGTH_BYTES:]
-
- class Counter:
- __value = nonce + [0]*(BLOCK_SIZE_BYTES - NONCE_LENGTH_BYTES)
- def next_value(self):
- temp = self.__value
- self.__value = inc(self.__value)
- return temp
-
- decrypted_data = aes_ctr_decrypt(cipher, key, Counter())
- plaintext = ''.join(map(lambda x: chr(x), decrypted_data))
-
- return plaintext
-
- RCON = (0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36)
- SBOX = (0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
- 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
- 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
- 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
- 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
- 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
- 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
- 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
- 0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
- 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
- 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
- 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
- 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
- 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
- 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
- 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16)
- MIX_COLUMN_MATRIX = ((2,3,1,1),
- (1,2,3,1),
- (1,1,2,3),
- (3,1,1,2))
-
- def sub_bytes(data):
- return map(lambda x: SBOX[x], data)
-
- def rotate(data):
- return data[1:] + [data[0]]
-
- def key_schedule_core(data, rcon_iteration):
- data = rotate(data)
- data = sub_bytes(data)
- data[0] = data[0] ^ RCON[rcon_iteration]
-
- return data
-
- def xor(data1, data2):
- return map(lambda (x,y): x^y, zip(data1, data2))
-
- def mix_column(data):
- data_mixed = []
- for row in range(4):
- mixed = 0
- for column in range(4):
- addend = data[column]
- if MIX_COLUMN_MATRIX[row][column] in (2,3):
- addend <<= 1
- if addend > 0xff:
- addend &= 0xff
- addend ^= 0x1b
- if MIX_COLUMN_MATRIX[row][column] == 3:
- addend ^= data[column]
- mixed ^= addend & 0xff
- data_mixed.append(mixed)
- return data_mixed
-
- def mix_columns(data):
- data_mixed = []
- for i in range(4):
- column = data[i*4 : (i+1)*4]
- data_mixed += mix_column(column)
- return data_mixed
-
- def shift_rows(data):
- data_shifted = []
- for column in range(4):
- for row in range(4):
- data_shifted.append( data[((column + row) & 0b11) * 4 + row] )
- return data_shifted
-
- def inc(data):
- data = data[:] # copy
- for i in range(len(data)-1,-1,-1):
- if data[i] == 255:
- data[i] = 0
- else:
- data[i] = data[i] + 1
- break
- return data
|