# -*- coding: utf-8 -*-
|
|
|
|
import array
|
|
from collections import namedtuple
|
|
from datetime import datetime
|
|
import numpy as np
|
|
import re
|
|
import struct
|
|
from StringIO import StringIO
|
|
|
|
|
|
field_of_view = namedtuple('FOV', ['number', 'x', 'y', 'z', 'pfs_offset'])
|
|
|
|
|
|
class Nd2Parser(object):
|
|
"""
|
|
Reads .nd2 files, provides an interface to the metadata, and generates numpy arrays from the image data.
|
|
You should not ever need to instantiate this class manually unless you're a developer.
|
|
|
|
"""
|
|
CHUNK_HEADER = 0xabeceda
|
|
CHUNK_MAP_START = "ND2 FILEMAP SIGNATURE NAME 0001!"
|
|
CHUNK_MAP_END = "ND2 CHUNK MAP SIGNATURE 0000001!"
|
|
|
|
def __init__(self, filename):
|
|
self._filename = filename
|
|
self._fh = None
|
|
self._chunk_map_start_location = None
|
|
self._cursor_position = 0
|
|
self._dimension_text = None
|
|
self._label_map = {}
|
|
self.metadata = {}
|
|
self._read_map()
|
|
self._parse_metadata()
|
|
|
|
@property
|
|
def _file_handle(self):
|
|
if self._fh is None:
|
|
self._fh = open(self._filename, "rb")
|
|
return self._fh
|
|
|
|
def _get_raw_image_data(self, image_group_number, channel_offset):
|
|
"""
|
|
Reads the raw bytes and the timestamp of an image.
|
|
|
|
:param image_group_number: groups are made of images with the same time index, field of view and z-level.
|
|
:type image_group_number: int
|
|
:param channel_offset: the offset in the array where the bytes for this image are found.
|
|
:type channel_offset: int
|
|
|
|
:return: (int, array.array()) or None
|
|
|
|
"""
|
|
chunk = self._label_map["ImageDataSeq|%d!" % image_group_number]
|
|
data = self._read_chunk(chunk)
|
|
# All images in the same image group share the same timestamp! So if you have complicated image data,
|
|
# your timestamps may not be entirely accurate. Practically speaking though, they'll only be off by a few
|
|
# seconds unless you're doing something super weird.
|
|
timestamp = struct.unpack("d", data[:8])[0]
|
|
image_group_data = array.array("H", data)
|
|
image_data_start = 4 + channel_offset
|
|
# The images for the various channels are interleaved within the same array. For example, the second image
|
|
# of a four image group will be composed of bytes 2, 6, 10, etc. If you understand why someone would design
|
|
# a data structure that way, please send the author of this library a message.
|
|
image_data = image_group_data[image_data_start::self._channel_count]
|
|
# Skip images that are all zeros! This is important, since NIS Elements creates blank "gap" images if you
|
|
# don't have the same number of images each cycle. We discovered this because we only took GFP images every
|
|
# other cycle to reduce phototoxicity, but NIS Elements still allocated memory as if we were going to take
|
|
# them every cycle.
|
|
if np.any(image_data):
|
|
return timestamp, image_data
|
|
return None
|
|
|
|
@property
|
|
def _dimensions(self):
|
|
"""
|
|
While there are metadata values that represent a lot of what we want to capture, they seem to be unreliable.
|
|
Sometimes certain elements don't exist, or change their data type randomly. However, the human-readable text
|
|
is always there and in the same exact format, so we just parse that instead.
|
|
|
|
:rtype: str
|
|
|
|
"""
|
|
if self._dimension_text is None:
|
|
for line in self.metadata['ImageTextInfo']['SLxImageTextInfo'].values():
|
|
if "Dimensions:" in line:
|
|
metadata = line
|
|
break
|
|
else:
|
|
raise ValueError("Could not parse metadata dimensions!")
|
|
for line in metadata.split("\r\n"):
|
|
if line.startswith("Dimensions:"):
|
|
self._dimension_text = line
|
|
break
|
|
else:
|
|
raise ValueError("Could not parse metadata dimensions!")
|
|
return self._dimension_text
|
|
|
|
@property
|
|
def _channels(self):
|
|
"""
|
|
These are labels created by the NIS Elements user. Typically they may a short description of the filter cube
|
|
used (e.g. "bright field", "GFP", etc.)
|
|
|
|
:rtype: str
|
|
|
|
"""
|
|
metadata = self.metadata['ImageMetadataSeq']['SLxPictureMetadata']['sPicturePlanes']
|
|
try:
|
|
validity = self.metadata['ImageMetadata']['SLxExperiment']['ppNextLevelEx'][''][0]['ppNextLevelEx'][''][0]['pItemValid']
|
|
except KeyError:
|
|
# If none of the channels have been deleted, there is no validity list, so we just make one
|
|
validity = [True for _ in metadata]
|
|
# Channel information is contained in dictionaries with the keys a0, a1...an where the number
|
|
# indicates the order in which the channel is stored. So by sorting the dicts alphabetically
|
|
# we get the correct order.
|
|
for (label, chan), valid in zip(sorted(metadata['sPlaneNew'].items()), validity):
|
|
if not valid:
|
|
continue
|
|
yield chan['sDescription']
|
|
|
|
def _calculate_image_group_number(self, time_index, fov, z_level):
|
|
"""
|
|
Images are grouped together if they share the same time index, field of view, and z-level.
|
|
|
|
:type time_index: int
|
|
:type fov: int
|
|
:type z_level: int
|
|
|
|
:rtype: int
|
|
|
|
"""
|
|
return time_index * self._field_of_view_count * self._z_level_count + (fov * self._z_level_count + z_level)
|
|
|
|
@property
|
|
def _channel_offset(self):
|
|
"""
|
|
Image data is interleaved for each image set. That is, if there are four images in a set, the first image
|
|
will consist of pixels 1, 5, 9, etc, the second will be pixels 2, 6, 10, and so forth.
|
|
|
|
:rtype: dict
|
|
|
|
"""
|
|
channel_offset = {}
|
|
for n, channel in enumerate(self._channels):
|
|
channel_offset[channel] = n
|
|
return channel_offset
|
|
|
|
@property
|
|
def _absolute_start(self):
|
|
"""
|
|
The date and time when acquisition began.
|
|
|
|
:rtype: datetime.datetime()
|
|
|
|
"""
|
|
for line in self.metadata['ImageTextInfo']['SLxImageTextInfo'].values():
|
|
absolute_start_12 = None
|
|
absolute_start_24 = None
|
|
# ND2s seem to randomly switch between 12- and 24-hour representations.
|
|
try:
|
|
absolute_start_24 = datetime.strptime(line, "%m/%d/%Y %H:%M:%S")
|
|
except ValueError:
|
|
pass
|
|
try:
|
|
absolute_start_12 = datetime.strptime(line, "%m/%d/%Y %I:%M:%S %p")
|
|
except ValueError:
|
|
pass
|
|
if not absolute_start_12 and not absolute_start_24:
|
|
continue
|
|
return absolute_start_12 if absolute_start_12 else absolute_start_24
|
|
raise ValueError("This ND2 has no recorded start time. This is probably a bug.")
|
|
|
|
@property
|
|
def _channel_count(self):
|
|
"""
|
|
The number of different channels used, including bright field.
|
|
|
|
:rtype: int
|
|
|
|
"""
|
|
pattern = r""".*?λ\((\d+)\).*?"""
|
|
try:
|
|
count = int(re.match(pattern, self._dimensions).group(1))
|
|
except AttributeError:
|
|
return 1
|
|
else:
|
|
return count
|
|
|
|
@property
|
|
def _field_of_view_count(self):
|
|
"""
|
|
The metadata contains information about fields of view, but it contains it even if some fields
|
|
of view were cropped. We can't find anything that states which fields of view are actually
|
|
in the image data, so we have to calculate it. There probably is something somewhere, since
|
|
NIS Elements can figure it out, but we haven't found it yet.
|
|
|
|
:rtype: int
|
|
|
|
"""
|
|
pattern = r""".*?XY\((\d+)\).*?"""
|
|
try:
|
|
count = int(re.match(pattern, self._dimensions).group(1))
|
|
except AttributeError:
|
|
return 1
|
|
else:
|
|
return count
|
|
|
|
@property
|
|
def _time_index_count(self):
|
|
"""
|
|
The number of cycles.
|
|
|
|
:rtype: int
|
|
|
|
"""
|
|
pattern = r""".*?T'\((\d+)\).*?"""
|
|
try:
|
|
count = int(re.match(pattern, self._dimensions).group(1))
|
|
except AttributeError:
|
|
return 1
|
|
else:
|
|
return count
|
|
|
|
@property
|
|
def _z_level_count(self):
|
|
"""
|
|
The number of different levels in the Z-plane.
|
|
|
|
:rtype: int
|
|
|
|
"""
|
|
pattern = r""".*?Z\((\d+)\).*?"""
|
|
try:
|
|
count = int(re.match(pattern, self._dimensions).group(1))
|
|
except AttributeError:
|
|
return 1
|
|
else:
|
|
return count
|
|
|
|
@property
|
|
def _image_count(self):
|
|
"""
|
|
The total number of images in the ND2. Warning: this may be inaccurate as it includes "gap" images.
|
|
|
|
:rtype: int
|
|
|
|
"""
|
|
return self.metadata['ImageAttributes']['SLxImageAttributes']['uiSequenceCount']
|
|
|
|
def _parse_metadata(self):
|
|
"""
|
|
Reads all metadata.
|
|
|
|
"""
|
|
for label in self._label_map.keys():
|
|
if label.endswith("LV!") or "LV|" in label:
|
|
data = self._read_chunk(self._label_map[label])
|
|
stop = label.index("LV")
|
|
self.metadata[label[:stop]] = self._read_metadata(data, 1)
|
|
|
|
def _read_map(self):
|
|
"""
|
|
Every label ends with an exclamation point, however, we can't directly search for those to find all the labels
|
|
as some of the bytes contain the value 33, which is the ASCII code for "!". So we iteratively find each label,
|
|
grab the subsequent data (always 16 bytes long), advance to the next label and repeat.
|
|
|
|
"""
|
|
self._file_handle.seek(-8, 2)
|
|
chunk_map_start_location = struct.unpack("Q", self._file_handle.read(8))[0]
|
|
self._file_handle.seek(chunk_map_start_location)
|
|
raw_text = self._file_handle.read(-1)
|
|
label_start = raw_text.index(Nd2Parser.CHUNK_MAP_START) + 32
|
|
|
|
while True:
|
|
data_start = raw_text.index("!", label_start) + 1
|
|
key = raw_text[label_start: data_start]
|
|
location, length = struct.unpack("QQ", raw_text[data_start: data_start + 16])
|
|
if key == Nd2Parser.CHUNK_MAP_END:
|
|
# We've reached the end of the chunk map
|
|
break
|
|
self._label_map[key] = location
|
|
label_start = data_start + 16
|
|
|
|
def _read_chunk(self, chunk_location):
|
|
"""
|
|
Gets the data for a given chunk pointer
|
|
|
|
"""
|
|
self._file_handle.seek(chunk_location)
|
|
# The chunk metadata is always 16 bytes long
|
|
chunk_metadata = self._file_handle.read(16)
|
|
header, relative_offset, data_length = struct.unpack("IIQ", chunk_metadata)
|
|
if header != Nd2Parser.CHUNK_HEADER:
|
|
raise ValueError("The ND2 file seems to be corrupted.")
|
|
# We start at the location of the chunk metadata, skip over the metadata, and then proceed to the
|
|
# start of the actual data field, which is at some arbitrary place after the metadata.
|
|
self._file_handle.seek(chunk_location + 16 + relative_offset)
|
|
return self._file_handle.read(data_length)
|
|
|
|
def _parse_unsigned_char(self, data):
|
|
return struct.unpack("B", data.read(1))[0]
|
|
|
|
def _parse_unsigned_int(self, data):
|
|
return struct.unpack("I", data.read(4))[0]
|
|
|
|
def _parse_unsigned_long(self, data):
|
|
return struct.unpack("Q", data.read(8))[0]
|
|
|
|
def _parse_double(self, data):
|
|
return struct.unpack("d", data.read(8))[0]
|
|
|
|
def _parse_string(self, data):
|
|
value = data.read(2)
|
|
while not value.endswith("\x00\x00"):
|
|
# the string ends at the first instance of \x00\x00
|
|
value += data.read(2)
|
|
return value.decode("utf16")[:-1].encode("utf8")
|
|
|
|
def _parse_char_array(self, data):
|
|
array_length = struct.unpack("Q", data.read(8))[0]
|
|
return array.array("B", data.read(array_length))
|
|
|
|
def _parse_metadata_item(self, data):
|
|
"""
|
|
Reads hierarchical data, analogous to a Python dict.
|
|
|
|
"""
|
|
new_count, length = struct.unpack("<IQ", data.read(12))
|
|
length -= data.tell() - self._cursor_position
|
|
next_data_length = data.read(length)
|
|
value = self._read_metadata(next_data_length, new_count)
|
|
# Skip some offsets
|
|
data.read(new_count * 8)
|
|
return value
|
|
|
|
def _get_value(self, data, data_type):
|
|
"""
|
|
ND2s use various codes to indicate different data types, which we translate here.
|
|
|
|
"""
|
|
parser = {1: self._parse_unsigned_char,
|
|
2: self._parse_unsigned_int,
|
|
3: self._parse_unsigned_int,
|
|
5: self._parse_unsigned_long,
|
|
6: self._parse_double,
|
|
8: self._parse_string,
|
|
9: self._parse_char_array,
|
|
11: self._parse_metadata_item}
|
|
return parser[data_type](data)
|
|
|
|
def _read_metadata(self, data, count):
|
|
"""
|
|
Iterates over each element some section of the metadata and parses it.
|
|
|
|
"""
|
|
data = StringIO(data)
|
|
metadata = {}
|
|
for _ in xrange(count):
|
|
self._cursor_position = data.tell()
|
|
header = data.read(2)
|
|
if not header:
|
|
# We've reached the end of some hierarchy of data
|
|
break
|
|
data_type, name_length = map(ord, header)
|
|
name = data.read(name_length * 2).decode("utf16")[:-1].encode("utf8")
|
|
value = self._get_value(data, data_type)
|
|
if name not in metadata.keys():
|
|
metadata[name] = value
|
|
else:
|
|
if not isinstance(metadata[name], list):
|
|
# We have encountered this key exactly once before. Since we're seeing it again, we know we
|
|
# need to convert it to a list before proceeding.
|
|
metadata[name] = [metadata[name]]
|
|
# We've encountered this key before so we're guaranteed to be dealing with a list. Thus we append
|
|
# the value to the already-existing list.
|
|
metadata[name].append(value)
|
|
return metadata
|