""" Functions to create artificial nd2 data for testing purposes """ import six import numpy as np import struct class ArtificialND2(object): """ Artificial ND2 class (for testing purposes) """ def __init__(self, file): self._fh = open(file, 'wb') self.write_version() def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() @property def file_handle(self): """ The file handle to the binary file Returns: file: the file handle """ return self._fh def close(self): """ Correctly close the file handle """ if self._fh is not None: self._fh.close() def write_version(self): """ Write file header """ # write 16 empty bytes self._fh.write(bytearray(16)) # write version info version_info = six.b('ND2 FILE SIGNATURE CHUNK NAME01!Ver3.0') self._fh.write(version_info) @staticmethod def create_label_map_bytes(): """ Construct a binary label map Returns: tuple: (binary data, dictionary data) """ raw_text = six.b('') labels = { 'image_attributes': "ImageAttributesLV!", 'image_text_info': "ImageTextInfoLV!", 'image_metadata': "ImageMetadataLV!", 'image_metadata_sequence': "ImageMetadataSeqLV|0!", 'image_calibration': "ImageCalibrationLV|0!", 'x_data': "CustomData|X!", 'y_data': "CustomData|Y!", 'z_data': "CustomData|Z!", 'roi_metadata': "CustomData|RoiMetadata_v1!", 'pfs_status': "CustomData|PFS_STATUS!", 'pfs_offset': "CustomData|PFS_OFFSET!", 'guid': "CustomData|GUIDStore!", 'description': "CustomData|CustomDescriptionV1_0!", 'camera_exposure_time': "CustomData|Camera_ExposureTime1!", 'camera_temp': "CustomData|CameraTemp1!", 'acquisition_times': "CustomData|AcqTimesCache!", 'acquisition_times_2': "CustomData|AcqTimes2Cache!", 'acquisition_frames': "CustomData|AcqFramesCache!", 'lut_data': "CustomDataVar|LUTDataV1_0!", 'grabber_settings': "CustomDataVar|GrabberCameraSettingsV1_0!", 'custom_data': "CustomDataVar|CustomDataV2_0!", 'app_info': "CustomDataVar|AppInfo_V1_0!", 'image_frame_0': "ImageDataSeq|0!" } data = {} # generate random positions and lengths lengths = np.random.random_integers(1, 999, len(labels)) positions = np.subtract(np.cumsum(lengths), lengths[0]) for length, pos, label in zip(lengths, positions, labels): raw_text += six.b(labels[label]) raw_text += struct.pack('QQ', pos, length) data[label] = (pos, length) return raw_text, data