Browse Source

Merge branch 'master' of github.com:rbnvrw/nd2reader

zolfa-add_slices_loading
Ruben Verweij 6 years ago
parent
commit
cb34964d8c
10 changed files with 196 additions and 212 deletions
  1. +1
    -1
      docs
  2. +1
    -1
      nd2reader/__init__.py
  3. +58
    -85
      nd2reader/artificial.py
  4. +101
    -0
      nd2reader/common_raw_metadata.py
  5. +5
    -2
      nd2reader/parser.py
  6. +12
    -94
      nd2reader/raw_metadata.py
  7. +2
    -19
      nd2reader/reader.py
  8. +1
    -1
      setup.py
  9. +2
    -2
      sphinx/conf.py
  10. +13
    -7
      tests/test_raw_metadata.py

+ 1
- 1
docs

@ -1 +1 @@
Subproject commit 1b43456084689bad958984cf8a0cad7f63b52286
Subproject commit 6a12543461144fc164942c79a0b1457fd6284779

+ 1
- 1
nd2reader/__init__.py View File

@ -1,4 +1,4 @@
from nd2reader.reader import ND2Reader
from nd2reader.legacy import Nd2
__version__ = '3.0.9'
__version__ = '3.1.0'

+ 58
- 85
nd2reader/artificial.py View File

@ -6,6 +6,27 @@ import struct
from nd2reader.common import check_or_make_dir
from os import path
global_labels = ['image_attributes', 'image_text_info', 'image_metadata',
'image_metadata_sequence', 'image_calibration', 'x_data',
'y_data', 'z_data', 'roi_metadata', 'pfs_status', 'pfs_offset',
'guid', 'description', 'camera_exposure_time', 'camera_temp',
'acquisition_times', 'acquisition_times_2',
'acquisition_frames', 'lut_data', 'grabber_settings',
'custom_data', 'app_info', 'image_frame_0']
global_file_labels = ["ImageAttributesLV!", "ImageTextInfoLV!",
"ImageMetadataLV!", "ImageMetadataSeqLV|0!",
"ImageCalibrationLV|0!", "CustomData|X!", "CustomData|Y!",
"CustomData|Z!", "CustomData|RoiMetadata_v1!",
"CustomData|PFS_STATUS!", "CustomData|PFS_OFFSET!",
"CustomData|GUIDStore!", "CustomData|CustomDescriptionV1_0!",
"CustomData|Camera_ExposureTime1!", "CustomData|CameraTemp1!",
"CustomData|AcqTimesCache!", "CustomData|AcqTimes2Cache!",
"CustomData|AcqFramesCache!", "CustomDataVar|LUTDataV1_0!",
"CustomDataVar|GrabberCameraSettingsV1_0!",
"CustomDataVar|CustomDataV2_0!", "CustomDataVar|AppInfo_V1_0!",
"ImageDataSeq|0!"]
class ArtificialND2(object):
"""Artificial ND2 class (for testing purposes)
@ -105,56 +126,8 @@ class ArtificialND2(object):
"""
raw_text = six.b('')
labels = [
'image_attributes',
'image_text_info',
'image_metadata',
'image_metadata_sequence',
'image_calibration',
'x_data',
'y_data',
'z_data',
'roi_metadata',
'pfs_status',
'pfs_offset',
'guid',
'description',
'camera_exposure_time',
'camera_temp',
'acquisition_times',
'acquisition_times_2',
'acquisition_frames',
'lut_data',
'grabber_settings',
'custom_data',
'app_info',
'image_frame_0'
]
file_labels = [
"ImageAttributesLV!",
"ImageTextInfoLV!",
"ImageMetadataLV!",
"ImageMetadataSeqLV|0!",
"ImageCalibrationLV|0!",
"CustomData|X!",
"CustomData|Y!",
"CustomData|Z!",
"CustomData|RoiMetadata_v1!",
"CustomData|PFS_STATUS!",
"CustomData|PFS_OFFSET!",
"CustomData|GUIDStore!",
"CustomData|CustomDescriptionV1_0!",
"CustomData|Camera_ExposureTime1!",
"CustomData|CameraTemp1!",
"CustomData|AcqTimesCache!",
"CustomData|AcqTimes2Cache!",
"CustomData|AcqFramesCache!",
"CustomDataVar|LUTDataV1_0!",
"CustomDataVar|GrabberCameraSettingsV1_0!",
"CustomDataVar|CustomDataV2_0!",
"CustomDataVar|AppInfo_V1_0!",
"ImageDataSeq|0!"
]
labels = global_labels
file_labels = global_file_labels
file_data, file_data_dict = self._get_file_data(labels)
@ -242,42 +215,42 @@ class ArtificialND2(object):
return raw_data
@staticmethod
def _get_slx_img_attrib():
return {'uiWidth': 128,
'uiWidthBytes': 256,
'uiHeight': 128,
'uiComp': 1,
'uiBpcInMemory': 16,
'uiBpcSignificant': 12,
'uiSequenceCount': 70,
'uiTileWidth': 128,
'uiTileHeight': 128,
'eCompression': 2,
'dCompressionParam': -1.0,
'ePixelType': 1,
'uiVirtualComponents': 1
}
@staticmethod
def _get_slx_picture_metadata():
return {'sPicturePlanes':
{
'sPlaneNew': {
# channels are numbered a0, a1, ..., aN
'a0': {
'sDescription': 'TRITC'
}
}
}
}
def _get_file_data(self, labels):
file_data = [
{
'SLxImageAttributes':
{
'uiWidth': 128,
'uiWidthBytes': 256,
'uiHeight': 128,
'uiComp': 1,
'uiBpcInMemory': 16,
'uiBpcSignificant': 12,
'uiSequenceCount': 70,
'uiTileWidth': 128,
'uiTileHeight': 128,
'eCompression': 2,
'dCompressionParam': -1.0,
'ePixelType': 1,
'uiVirtualComponents': 1
}
}, # ImageAttributesLV!",
{'SLxImageAttributes': self._get_slx_img_attrib()}, # ImageAttributesLV!",
7, # ImageTextInfoLV!",
7, # ImageMetadataLV!",
{
'SLxPictureMetadata':
{
'sPicturePlanes':
{
'sPlaneNew': {
# channels are numbered a0, a1, ..., aN
'a0': {
'sDescription': 'TRITC'
}
}
}
}
}, # ImageMetadataSeqLV|0!",
{'SLxPictureMetadata': self._get_slx_picture_metadata()}, # ImageMetadataSeqLV|0!",
7, # ImageCalibrationLV|0!",
7, # CustomData|X!",
7, # CustomData|Y!",
@ -289,9 +262,9 @@ class ArtificialND2(object):
7, # CustomData|CustomDescriptionV1_0!",
7, # CustomData|Camera_ExposureTime1!",
7, # CustomData|CameraTemp1!",
7, # CustomData|AcqTimesCache!",
7, # CustomData|AcqTimes2Cache!",
7, # CustomData|AcqFramesCache!",
[0], # CustomData|AcqTimesCache!",
[0], # CustomData|AcqTimes2Cache!",
[0], # CustomData|AcqFramesCache!",
7, # CustomDataVar|LUTDataV1_0!",
7, # CustomDataVar|GrabberCameraSettingsV1_0!",
7, # CustomDataVar|CustomDataV2_0!",


+ 101
- 0
nd2reader/common_raw_metadata.py View File

@ -0,0 +1,101 @@
import six
import warnings
from nd2reader.common import get_from_dict_if_exists
def parse_if_not_none(to_check, callback):
if to_check is not None:
return callback()
return None
def parse_dimension_text_line(line):
if six.b("Dimensions:") in line:
entries = line.split(six.b("\r\n"))
for entry in entries:
if entry.startswith(six.b("Dimensions:")):
return entry
return None
def parse_roi_shape(shape):
if shape == 3:
return 'rectangle'
elif shape == 9:
return 'circle'
return None
def parse_roi_type(type_no):
if type_no == 4:
return 'stimulation'
elif type_no == 3:
return 'reference'
elif type_no == 2:
return 'background'
return None
def get_loops_from_data(loop_data):
loops = [loop_data]
if six.b('uiPeriodCount') in loop_data and loop_data[six.b('uiPeriodCount')] > 0:
# special ND experiment
if six.b('pPeriod') not in loop_data:
return []
# take the first dictionary element, it contains all loop data
loops = loop_data[six.b('pPeriod')][list(loop_data[six.b('pPeriod')].keys())[0]]
return loops
def guess_sampling_from_loops(duration, loop):
""" In some cases, both keys are not saved. Then try to calculate it.
Args:
duration: the total duration of the loop
loop: the raw loop data
Returns:
float: the guessed sampling interval in milliseconds
"""
number_of_loops = get_from_dict_if_exists('uiCount', loop)
number_of_loops = number_of_loops if number_of_loops is not None and number_of_loops > 0 else 1
interval = duration / number_of_loops
return interval
def determine_sampling_interval(duration, loop):
"""Determines the loop sampling interval in milliseconds
Args:
duration: loop duration in milliseconds
loop: loop dictionary
Returns:
float: the sampling interval in milliseconds
"""
interval = get_from_dict_if_exists('dPeriod', loop)
avg_interval = get_from_dict_if_exists('dAvgPeriodDiff', loop)
if interval is None or interval <= 0:
interval = avg_interval
else:
avg_interval_set = avg_interval is not None and avg_interval > 0
if round(avg_interval) != round(interval) and avg_interval_set:
message = ("Reported average frame interval (%.1f ms) doesn't"
" match the set interval (%.1f ms). Using the average"
" now.")
warnings.warn(message % (avg_interval, interval), RuntimeWarning)
interval = avg_interval
if interval is None or interval <= 0:
# In some cases, both keys are not saved. Then try to calculate it.
interval = guess_sampling_from_loops(duration, loop)
return interval

+ 5
- 2
nd2reader/parser.py View File

@ -265,8 +265,11 @@ class Parser(object):
# The images for the various channels are interleaved within the same array. For example, the second image
# of a four image group will be composed of bytes 2, 6, 10, etc. If you understand why someone would design
# a data structure that way, please send the author of this library a message.
number_of_true_channels = int((len(image_group_data) - 4) / (height * width))
image_data = np.reshape(image_group_data[image_data_start::number_of_true_channels], (height, width))
number_of_true_channels = int(len(image_group_data[4:]) / (height * width))
try:
image_data = np.reshape(image_group_data[image_data_start::number_of_true_channels], (height, width))
except ValueError:
image_data = np.reshape(image_group_data[image_data_start::number_of_true_channels], (height, int(round(len(image_group_data[image_data_start::number_of_true_channels])/height))))
# Skip images that are all zeros! This is important, since NIS Elements creates blank "gap" images if you
# don't have the same number of images each cycle. We discovered this because we only took GFP images every


+ 12
- 94
nd2reader/raw_metadata.py View File

@ -1,9 +1,11 @@
import re
from nd2reader.common import read_chunk, read_array, read_metadata, parse_date, get_from_dict_if_exists
import xmltodict
import six
import numpy as np
from nd2reader.common import read_chunk, read_array, read_metadata, parse_date, get_from_dict_if_exists
from nd2reader.common_raw_metadata import parse_dimension_text_line, parse_if_not_none, parse_roi_shape, parse_roi_type, get_loops_from_data, determine_sampling_interval
class RawMetadata(object):
"""RawMetadata class parses and stores the raw metadata that is read from the binary file in dict format.
@ -35,15 +37,15 @@ class RawMetadata(object):
frames_per_channel = self._parse_total_images_per_channel()
self._metadata_parsed = {
"height": self._parse_if_not_none(self.image_attributes, self._parse_height),
"width": self._parse_if_not_none(self.image_attributes, self._parse_width),
"date": self._parse_if_not_none(self.image_text_info, self._parse_date),
"height": parse_if_not_none(self.image_attributes, self._parse_height),
"width": parse_if_not_none(self.image_attributes, self._parse_width),
"date": parse_if_not_none(self.image_text_info, self._parse_date),
"fields_of_view": self._parse_fields_of_view(),
"frames": self._parse_frames(),
"z_levels": self._parse_z_levels(),
"total_images_per_channel": frames_per_channel,
"channels": self._parse_channels(),
"pixel_microns": self._parse_if_not_none(self.image_calibration, self._parse_calibration),
"pixel_microns": parse_if_not_none(self.image_calibration, self._parse_calibration),
}
self._set_default_if_not_empty('fields_of_view')
@ -63,12 +65,6 @@ class RawMetadata(object):
# if the file is not empty, we always have one of this entry
self._metadata_parsed[entry] = [0]
@staticmethod
def _parse_if_not_none(to_check, callback):
if to_check is not None:
return callback()
return None
def _parse_width_or_height(self, key):
try:
length = self.image_attributes[six.b('SLxImageAttributes')][six.b(key)]
@ -180,21 +176,12 @@ class RawMetadata(object):
return dimension_text
for line in textinfo:
entry = self._parse_dimension_text_line(line)
entry = parse_dimension_text_line(line)
if entry is not None:
return entry
return dimension_text
@staticmethod
def _parse_dimension_text_line(line):
if six.b("Dimensions:") in line:
entries = line.split(six.b("\r\n"))
for entry in entries:
if entry.startswith(six.b("Dimensions:")):
return entry
return None
def _parse_dimension(self, pattern):
dimension_text = self._parse_dimension_text()
if dimension_text is None:
@ -261,8 +248,8 @@ class RawMetadata(object):
"timepoints": [],
"positions": [],
"sizes": [],
"shape": self._parse_roi_shape(raw_roi_dict[six.b('m_sInfo')][six.b('m_uiShapeType')]),
"type": self._parse_roi_type(raw_roi_dict[six.b('m_sInfo')][six.b('m_uiInterpType')])
"shape": parse_roi_shape(raw_roi_dict[six.b('m_sInfo')][six.b('m_uiShapeType')]),
"type": parse_roi_type(raw_roi_dict[six.b('m_sInfo')][six.b('m_uiInterpType')])
}
for i in range(number_of_timepoints):
roi_dict = self._parse_vect_anim(roi_dict, raw_roi_dict[six.b('m_vectAnimParams_%d' % i)])
@ -274,26 +261,6 @@ class RawMetadata(object):
return roi_dict
@staticmethod
def _parse_roi_shape(shape):
if shape == 3:
return 'rectangle'
elif shape == 9:
return 'circle'
return None
@staticmethod
def _parse_roi_type(type_no):
if type_no == 4:
return 'stimulation'
elif type_no == 3:
return 'reference'
elif type_no == 2:
return 'background'
return None
def _parse_vect_anim(self, roi_dict, animation_dict):
"""
Parses a ROI vector animation object and adds it to the global list of timepoints and positions.
@ -345,18 +312,6 @@ class RawMetadata(object):
if six.b('uLoopPars') in raw_data:
self._metadata_parsed['experiment']['loops'] = self._parse_loop_data(raw_data[six.b('uLoopPars')])
@staticmethod
def _get_loops_from_data(loop_data):
loops = [loop_data]
if six.b('uiPeriodCount') in loop_data and loop_data[six.b('uiPeriodCount')] > 0:
# special ND experiment
if six.b('pPeriod') not in loop_data:
return []
# take the first dictionary element, it contains all loop data
loops = loop_data[six.b('pPeriod')][list(loop_data[six.b('pPeriod')].keys())[0]]
return loops
def _parse_loop_data(self, loop_data):
"""Parse the experimental loop data
@ -367,7 +322,7 @@ class RawMetadata(object):
list: list of the parsed loops
"""
loops = self._get_loops_from_data(loop_data)
loops = get_loops_from_data(loop_data)
# take into account the absolute time in ms
time_offset = 0
@ -377,7 +332,7 @@ class RawMetadata(object):
for loop in loops:
# duration of this loop
duration = get_from_dict_if_exists('dDuration', loop) or 0
interval = self._determine_sampling_interval(duration, loop)
interval = determine_sampling_interval(duration, loop)
# if duration is not saved, infer it
duration = self.get_duration_from_interval_and_loops(duration, interval, loop)
@ -418,43 +373,6 @@ class RawMetadata(object):
return duration
@staticmethod
def _determine_sampling_interval(duration, loop):
"""Determines the loop sampling interval in milliseconds
Args:
duration: loop duration in milliseconds
loop: loop dictionary
Returns:
float: the sampling interval in milliseconds
"""
interval = get_from_dict_if_exists('dPeriod', loop)
if interval is None or interval <= 0:
# Use a fallback if it is still not found
interval = get_from_dict_if_exists('dAvgPeriodDiff', loop)
if interval is None or interval <= 0:
# In some cases, both keys are not saved. Then try to calculate it.
interval = RawMetadata._guess_sampling_from_loops(duration, loop)
return interval
@staticmethod
def _guess_sampling_from_loops(duration, loop):
""" In some cases, both keys are not saved. Then try to calculate it.
Args:
duration: the total duration of the loop
loop: the raw loop data
Returns:
float: the guessed sampling interval in milliseconds
"""
number_of_loops = get_from_dict_if_exists('uiCount', loop)
number_of_loops = number_of_loops if number_of_loops is not None and number_of_loops > 0 else 1
interval = duration / number_of_loops
return interval
@property
def image_text_info(self):


+ 2
- 19
nd2reader/reader.py View File

@ -185,26 +185,9 @@ class ND2Reader(FramesSequenceND):
np.ndarray: an array of times in milliseconds.
"""
if self._timesteps is not None and len(timesteps) > 0:
if self._timesteps is not None and len(self._timesteps) > 0:
return self._timesteps
timesteps = np.array([])
current_time = 0.0
for loop in self.metadata['experiment']['loops']:
if loop['stimulation']:
continue
if loop['sampling_interval'] == 0:
# This is a loop were no data is acquired
current_time += loop['duration']
continue
timesteps = np.concatenate(
(timesteps, np.arange(current_time, current_time + loop['duration'], loop['sampling_interval'])))
current_time += loop['duration']
# if experiment did not finish, number of timesteps is wrong. Take correct amount of leading timesteps.
self._timesteps = timesteps[:self.metadata['num_frames']]
self._timesteps = np.array(list(self._parser._raw_metadata.acquisition_times), dtype=np.float) * 1000.0
return self._timesteps

+ 1
- 1
setup.py View File

@ -1,6 +1,6 @@
from setuptools import setup
VERSION = '3.0.9'
VERSION = '3.1.0'
if __name__ == '__main__':
setup(


+ 2
- 2
sphinx/conf.py View File

@ -44,9 +44,9 @@ author = 'Ruben Verweij'
# built documents.
#
# The short X.Y version.
version = '3.0.9'
version = '3.1.0'
# The full version, including alpha/beta/rc tags.
release = '3.0.9'
release = '3.1.0'
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.


+ 13
- 7
tests/test_raw_metadata.py View File

@ -4,6 +4,7 @@ import six
from nd2reader.artificial import ArtificialND2
from nd2reader.label_map import LabelMap
from nd2reader.raw_metadata import RawMetadata
from nd2reader.common_raw_metadata import parse_roi_shape, parse_roi_type, parse_dimension_text_line
class TestRawMetadata(unittest.TestCase):
@ -14,15 +15,20 @@ class TestRawMetadata(unittest.TestCase):
self.metadata = RawMetadata(self.nd2.file_handle, self.label_map)
def test_parse_roi_shape(self):
self.assertEqual(self.metadata._parse_roi_shape(3), 'rectangle')
self.assertEqual(self.metadata._parse_roi_shape(9), 'circle')
self.assertIsNone(self.metadata._parse_roi_shape(-1))
self.assertEqual(parse_roi_shape(3), 'rectangle')
self.assertEqual(parse_roi_shape(9), 'circle')
self.assertIsNone(parse_roi_shape(-1))
def test_parse_roi_type(self):
self.assertEqual(self.metadata._parse_roi_type(3), 'reference')
self.assertEqual(self.metadata._parse_roi_type(2), 'background')
self.assertEqual(self.metadata._parse_roi_type(4), 'stimulation')
self.assertIsNone(self.metadata._parse_roi_type(-1))
self.assertEqual(parse_roi_type(3), 'reference')
self.assertEqual(parse_roi_type(2), 'background')
self.assertEqual(parse_roi_type(4), 'stimulation')
self.assertIsNone(parse_roi_type(-1))
def test_parse_dimension_text(self):
line = six.b('Metadata:\r\nDimensions: T(443) x \xce\xbb(1)\r\nCamera Name: Andor Zyla VSC-01537')
self.assertEqual(parse_dimension_text_line(line), six.b('Dimensions: T(443) x \xce\xbb(1)'))
self.assertIsNone(parse_dimension_text_line(six.b('Dim: nothing')))
def test_dict(self):
self.assertTrue(type(self.metadata.__dict__) is dict)


Loading…
Cancel
Save