|
|
- from pims.base_frames import FramesSequenceND
-
- from nd2reader.exceptions import EmptyFileError
- from nd2reader.parser import Parser
- import numpy as np
-
-
- class ND2Reader(FramesSequenceND):
- """PIMS wrapper for the ND2 parser.
- This is the main class: use this to process your .nd2 files.
- """
-
- class_priority = 12
-
- def __init__(self, filename):
- super(self.__class__, self).__init__()
- self.filename = filename
-
- # first use the parser to parse the file
- self._fh = open(filename, "rb")
- self._parser = Parser(self._fh)
-
- # Setup metadata
- self.metadata = self._parser.metadata
-
- # Set data type
- self._dtype = self._parser.get_dtype_from_metadata()
-
- # Setup the axes
- self._setup_axes()
-
- # Other properties
- self._timesteps = None
-
- @classmethod
- def class_exts(cls):
- """Let PIMS open function use this reader for opening .nd2 files
-
- """
- return {'nd2'} | super(ND2Reader, cls).class_exts()
-
- def close(self):
- """Correctly close the file handle
-
- """
- if self._fh is not None:
- self._fh.close()
-
- def _get_default(self, coord):
- try:
- return self.default_coords[coord]
- except KeyError:
- return 0
-
- def get_frame_2D(self, c=0, t=0, z=0, x=0, y=0, v=0):
- """Gets a given frame using the parser
-
- Args:
- x: The x-index (pims expects this)
- y: The y-index (pims expects this)
- c: The color channel number
- t: The frame number
- z: The z stack number
- v: The field of view index
-
- Returns:
- numpy.ndarray: The requested frame
-
- """
- try:
- c_name = self.metadata["channels"][c]
- except KeyError:
- c_name = self.metadata["channels"][0]
-
- x = self.metadata["width"] if x <= 0 else x
- y = self.metadata["height"] if y <= 0 else y
- return self._parser.get_image_by_attributes(t, v, c_name, z, y, x)
-
- @property
- def parser(self):
- """
- Returns the parser object.
- Returns:
- Parser: the parser object
- """
- return self._parser
-
- @property
- def pixel_type(self):
- """Return the pixel data type
-
- Returns:
- dtype: the pixel data type
-
- """
- return self._dtype
-
- @property
- def timesteps(self):
- """Get the timesteps of the experiment
-
- Returns:
- np.ndarray: an array of times in milliseconds.
-
- """
- if self._timesteps is None:
- return self.get_timesteps()
- return self._timesteps
-
- @property
- def frame_rate(self):
- """The (average) frame rate
-
- Returns:
- float: the (average) frame rate in frames per second
- """
- return 1000. / np.mean(np.diff(self.timesteps))
-
- def _get_metadata_property(self, key, default=None):
- if self.metadata is None:
- return default
-
- if key not in self.metadata:
- return default
-
- if self.metadata[key] is None:
- return default
-
- return self.metadata[key]
-
- def _setup_axes(self):
- """Setup the xyctz axes, iterate over t axis by default
-
- """
- self._init_axis_if_exists('x', self._get_metadata_property("width", default=0))
- self._init_axis_if_exists('y', self._get_metadata_property("height", default=0))
- self._init_axis_if_exists('c', len(self._get_metadata_property("channels", default=[])), min_size=2)
- self._init_axis_if_exists('t', len(self._get_metadata_property("frames", default=[])))
- self._init_axis_if_exists('z', len(self._get_metadata_property("z_levels", default=[])), min_size=2)
- self._init_axis_if_exists('v', len(self._get_metadata_property("fields_of_view", default=[])), min_size=2)
-
- if len(self.sizes) == 0:
- raise EmptyFileError("No axes were found for this .nd2 file.")
-
- # provide the default
- self.iter_axes = self._guess_default_iter_axis()
-
- def _init_axis_if_exists(self, axis, size, min_size=1):
- if size >= min_size:
- self._init_axis(axis, size)
-
- def _guess_default_iter_axis(self):
- """
- Guesses the default axis to iterate over based on axis sizes.
- Returns:
- the axis to iterate over
- """
- priority = ['t', 'z', 'c', 'v']
- found_axes = []
- for axis in priority:
- try:
- current_size = self.sizes[axis]
- except KeyError:
- continue
-
- if current_size > 1:
- return axis
-
- found_axes.append(axis)
-
- return found_axes[0]
-
- def get_timesteps(self):
- """Get the timesteps of the experiment
-
- Returns:
- np.ndarray: an array of times in milliseconds.
-
- """
- if self._timesteps is not None and len(timesteps) > 0:
- return self._timesteps
-
- timesteps = np.array([])
- current_time = 0.0
-
- for loop in self.metadata['experiment']['loops']:
- if loop['stimulation']:
- continue
-
- if loop['sampling_interval'] == 0:
- # This is a loop were no data is acquired
- current_time += loop['duration']
- continue
-
- timesteps = np.concatenate(
- (timesteps, np.arange(current_time, current_time + loop['duration'], loop['sampling_interval'])))
- current_time += loop['duration']
-
- # if experiment did not finish, number of timesteps is wrong. Take correct amount of leading timesteps.
- self._timesteps = timesteps[:self.metadata['num_frames']]
-
- return self._timesteps
|