|
|
- # -*- coding: utf-8 -*-
-
- import array
- import numpy as np
- import struct
- import six
- from nd2reader.model.image import Image
- from nd2reader.common.v3 import read_chunk
-
-
- class V3Driver(object):
- def __init__(self, metadata, label_map, file_handle):
- self._metadata = metadata
- self._label_map = label_map
- self._file_handle = file_handle
-
- def _calculate_field_of_view(self, frame_number):
- images_per_cycle = len(self._metadata.z_levels) * len(self._metadata.channels)
- return int((frame_number - (frame_number % images_per_cycle)) / images_per_cycle) % len(self._metadata.fields_of_view)
-
- def _calculate_channel(self, frame_number):
- return self._metadata.channels[frame_number % len(self._metadata.channels)]
-
- def _calculate_z_level(self, frame_number):
- return self._metadata.z_levels[int(((frame_number - (frame_number % len(self._metadata.channels))) / len(self._metadata.channels)) % len(self._metadata.z_levels))]
-
- def _calculate_image_group_number(self, time_index, fov, z_level):
- """
- Images are grouped together if they share the same time index, field of view, and z-level.
-
- :type time_index: int
- :type fov: int
- :type z_level: int
-
- :rtype: int
-
- """
- return time_index * len(self._metadata.fields_of_view) * len(self._metadata.z_levels) + (fov * len(self._metadata.z_levels) + z_level)
-
- def _calculate_frame_number(self, image_group_number, fov, z_level):
- return (image_group_number - (fov * len(self._metadata.z_levels) + z_level)) / (len(self._metadata.fields_of_view) * len(self._metadata.z_levels))
-
- def get_image(self, index):
- channel_offset = index % len(self._metadata.channels)
- fov = self._calculate_field_of_view(index)
- channel = self._calculate_channel(index)
- z_level = self._calculate_z_level(index)
- image_group_number = int(index / len(self._metadata.channels))
- frame_number = self._calculate_frame_number(image_group_number, fov, z_level)
- timestamp, image = self._get_raw_image_data(image_group_number, channel_offset, self._metadata.height, self._metadata.width)
- image.add_params(timestamp, frame_number, fov, channel, z_level)
- return image
-
- @property
- def _channel_offset(self):
- """
- Image data is interleaved for each image set. That is, if there are four images in a set, the first image
- will consist of pixels 1, 5, 9, etc, the second will be pixels 2, 6, 10, and so forth.
-
- :rtype: dict
-
- """
- channel_offset = {}
- for n, channel in enumerate(self._metadata.channels):
- channel_offset[channel] = n
- return channel_offset
-
- def _get_raw_image_data(self, image_group_number, channel_offset, height, width):
- """
- Reads the raw bytes and the timestamp of an image.
-
- :param image_group_number: groups are made of images with the same time index, field of view and z-level.
- :type image_group_number: int
- :param channel_offset: the offset in the array where the bytes for this image are found.
- :type channel_offset: int
-
- :return: (int, array.array()) or None
-
- """
- chunk = self._label_map[six.b("ImageDataSeq|%d!" % image_group_number)]
- data = read_chunk(self._file_handle, chunk)
- # All images in the same image group share the same timestamp! So if you have complicated image data,
- # your timestamps may not be entirely accurate. Practically speaking though, they'll only be off by a few
- # seconds unless you're doing something super weird.
- timestamp = struct.unpack("d", data[:8])[0]
- image_group_data = array.array("H", data)
- image_data_start = 4 + channel_offset
- # The images for the various channels are interleaved within the same array. For example, the second image
- # of a four image group will be composed of bytes 2, 6, 10, etc. If you understand why someone would design
- # a data structure that way, please send the author of this library a message.
- image_data = np.reshape(image_group_data[image_data_start::len(self._metadata.channels)], (height, width))
- # Skip images that are all zeros! This is important, since NIS Elements creates blank "gap" images if you
- # don't have the same number of images each cycle. We discovered this because we only took GFP images every
- # other cycle to reduce phototoxicity, but NIS Elements still allocated memory as if we were going to take
- # them every cycle.
- if np.any(image_data):
- return timestamp, Image(image_data)
- return None
|