- import re
- import xmltodict
- import six
- import numpy as np
-
- from nd2reader.common import read_chunk, read_array, read_metadata, parse_date, get_from_dict_if_exists
- from nd2reader.common_raw_metadata import parse_dimension_text_line, parse_if_not_none, parse_roi_shape, parse_roi_type, get_loops_from_data, determine_sampling_interval
-
-
- class RawMetadata(object):
- """RawMetadata class parses and stores the raw metadata that is read from the binary file in dict format.
- """
-
- def __init__(self, fh, label_map):
- self._fh = fh
- self._label_map = label_map
- self._metadata_parsed = None
-
- @property
- def __dict__(self):
- """Returns the parsed metadata in dictionary form.
-
- Returns:
- dict: the parsed metadata
- """
- return self.get_parsed_metadata()
-
- def get_parsed_metadata(self):
- """Returns the parsed metadata in dictionary form.
-
- Returns:
- dict: the parsed metadata
- """
-
- if self._metadata_parsed is not None:
- return self._metadata_parsed
-
- frames_per_channel = self._parse_total_images_per_channel()
- self._metadata_parsed = {
- "height": parse_if_not_none(self.image_attributes, self._parse_height),
- "width": parse_if_not_none(self.image_attributes, self._parse_width),
- "date": parse_if_not_none(self.image_text_info, self._parse_date),
- "fields_of_view": self._parse_fields_of_view(),
- "frames": self._parse_frames(),
- "z_levels": self._parse_z_levels(),
- "total_images_per_channel": frames_per_channel,
- "channels": self._parse_channels(),
- "pixel_microns": parse_if_not_none(self.image_calibration, self._parse_calibration),
- }
-
- self._set_default_if_not_empty('fields_of_view')
- self._set_default_if_not_empty('frames')
- self._metadata_parsed['num_frames'] = len(self._metadata_parsed['frames'])
-
- self._parse_roi_metadata()
- self._parse_experiment_metadata()
-
- return self._metadata_parsed
-
- def _set_default_if_not_empty(self, entry):
- total_images = self._metadata_parsed['total_images_per_channel'] \
- if self._metadata_parsed['total_images_per_channel'] is not None else 0
-
- if len(self._metadata_parsed[entry]) == 0 and total_images > 0:
- # if the file is not empty, we always have one of this entry
- self._metadata_parsed[entry] = [0]
-
- def _parse_width_or_height(self, key):
- try:
- length = self.image_attributes[six.b('SLxImageAttributes')][six.b(key)]
- except KeyError:
- length = None
-
- return length
-
- def _parse_height(self):
- return self._parse_width_or_height('uiHeight')
-
- def _parse_width(self):
- return self._parse_width_or_height('uiWidth')
-
- def _parse_date(self):
- try:
- return parse_date(self.image_text_info[six.b('SLxImageTextInfo')])
- except KeyError:
- return None
-
- def _parse_calibration(self):
- try:
- return self.image_calibration.get(six.b('SLxCalibration'), {}).get(six.b('dCalibration'))
- except KeyError:
- return None
-
- def _parse_frames(self):
- """The number of cycles.
-
- Returns:
- list: list of all the frame numbers
- """
- return self._parse_dimension(r""".*?T'?\((\d+)\).*?""")
-
- def _parse_channels(self):
- """These are labels created by the NIS Elements user. Typically they may a short description of the filter cube
- used (e.g. 'bright field', 'GFP', etc.)
-
- Returns:
- list: the color channels
- """
- if self.image_metadata_sequence is None:
- return []
-
- try:
- metadata = self.image_metadata_sequence[six.b('SLxPictureMetadata')][six.b('sPicturePlanes')]
- except KeyError:
- return []
-
- channels = self._process_channels_metadata(metadata)
-
- return channels
-
- def _process_channels_metadata(self, metadata):
- validity = self._get_channel_validity_list(metadata)
-
- # Channel information is contained in dictionaries with the keys a0, a1...an where the number
- # indicates the order in which the channel is stored. So by sorting the dicts alphabetically
- # we get the correct order.
- channels = []
- for valid, (label, chan) in zip(validity, sorted(metadata[six.b('sPlaneNew')].items())):
- if not valid:
- continue
- if chan[six.b('sDescription')] is not None:
- channels.append(chan[six.b('sDescription')].decode("utf8"))
- else:
- channels.append('Unknown')
- return channels
-
- def _get_channel_validity_list(self, metadata):
- try:
- validity = self.image_metadata[six.b('SLxExperiment')][six.b('ppNextLevelEx')][six.b('')][0][
- six.b('ppNextLevelEx')][six.b('')][0][six.b('pItemValid')]
- except (KeyError, TypeError):
- # If none of the channels have been deleted, there is no validity list, so we just make one
- validity = [True for _ in metadata]
- return validity
-
- def _parse_fields_of_view(self):
- """The metadata contains information about fields of view, but it contains it even if some fields
- of view were cropped. We can't find anything that states which fields of view are actually
- in the image data, so we have to calculate it. There probably is something somewhere, since
- NIS Elements can figure it out, but we haven't found it yet.
-
- """
- return self._parse_dimension(r""".*?XY\((\d+)\).*?""")
-
- def _parse_z_levels(self):
- """The different levels in the Z-plane.
-
- Returns:
- list: the z levels, just a sequence from 0 to n.
- """
- return self._parse_dimension(r""".*?Z\((\d+)\).*?""")
-
- def _parse_dimension_text(self):
- """While there are metadata values that represent a lot of what we want to capture, they seem to be unreliable.
- Sometimes certain elements don't exist, or change their data type randomly. However, the human-readable text
- is always there and in the same exact format, so we just parse that instead.
-
- """
- dimension_text = six.b("")
- if self.image_text_info is None:
- return dimension_text
-
- try:
- textinfo = self.image_text_info[six.b('SLxImageTextInfo')].values()
- except KeyError:
- return dimension_text
-
- for line in textinfo:
- entry = parse_dimension_text_line(line)
- if entry is not None:
- return entry
-
- return dimension_text
-
- def _parse_dimension(self, pattern):
- dimension_text = self._parse_dimension_text()
- if dimension_text is None:
- return []
- if six.PY3:
- dimension_text = dimension_text.decode("utf8")
- match = re.match(pattern, dimension_text)
- if not match:
- return []
- count = int(match.group(1))
- return list(range(count))
-
- def _parse_total_images_per_channel(self):
- """The total number of images per channel.
-
- Warning: this may be inaccurate as it includes 'gap' images.
-
- """
- if self.image_attributes is None:
- return 0
- try:
- total_images = self.image_attributes[six.b('SLxImageAttributes')][six.b('uiSequenceCount')]
- except KeyError:
- total_images = None
-
- return total_images
-
- def _parse_roi_metadata(self):
- """Parse the raw ROI metadata.
-
- """
- if self.roi_metadata is None or not six.b('RoiMetadata_v1') in self.roi_metadata:
- return
-
- raw_roi_data = self.roi_metadata[six.b('RoiMetadata_v1')]
-
- if not six.b('m_vectGlobal_Size') in raw_roi_data:
- return
-
- number_of_rois = raw_roi_data[six.b('m_vectGlobal_Size')]
-
- roi_objects = []
- for i in range(number_of_rois):
- current_roi = raw_roi_data[six.b('m_vectGlobal_%d' % i)]
- roi_objects.append(self._parse_roi(current_roi))
-
- self._metadata_parsed['rois'] = roi_objects
-
- def _parse_roi(self, raw_roi_dict):
- """Extract the vector animation parameters from the ROI.
-
- This includes the position and size at the given timepoints.
-
- Args:
- raw_roi_dict: dictionary of raw roi metadata
-
- Returns:
- dict: the parsed ROI metadata
-
- """
- number_of_timepoints = raw_roi_dict[six.b('m_vectAnimParams_Size')]
-
- roi_dict = {
- "timepoints": [],
- "positions": [],
- "sizes": [],
- "shape": parse_roi_shape(raw_roi_dict[six.b('m_sInfo')][six.b('m_uiShapeType')]),
- "type": parse_roi_type(raw_roi_dict[six.b('m_sInfo')][six.b('m_uiInterpType')])
- }
- for i in range(number_of_timepoints):
- roi_dict = self._parse_vect_anim(roi_dict, raw_roi_dict[six.b('m_vectAnimParams_%d' % i)])
-
- # convert to NumPy arrays
- roi_dict["timepoints"] = np.array(roi_dict["timepoints"], dtype=np.float)
- roi_dict["positions"] = np.array(roi_dict["positions"], dtype=np.float)
- roi_dict["sizes"] = np.array(roi_dict["sizes"], dtype=np.float)
-
- return roi_dict
-
- def _parse_vect_anim(self, roi_dict, animation_dict):
- """
- Parses a ROI vector animation object and adds it to the global list of timepoints and positions.
-
- Args:
- roi_dict: the raw roi dictionary
- animation_dict: the raw animation dictionary
-
- Returns:
- dict: the parsed metadata
-
- """
- roi_dict["timepoints"].append(animation_dict[six.b('m_dTimeMs')])
-
- image_width = self._metadata_parsed["width"] * self._metadata_parsed["pixel_microns"]
- image_height = self._metadata_parsed["height"] * self._metadata_parsed["pixel_microns"]
-
- # positions are taken from the center of the image as a fraction of the half width/height of the image
- position = np.array((0.5 * image_width * (1 + animation_dict[six.b('m_dCenterX')]),
- 0.5 * image_height * (1 + animation_dict[six.b('m_dCenterY')]),
- animation_dict[six.b('m_dCenterZ')]))
- roi_dict["positions"].append(position)
-
- size_dict = animation_dict[six.b('m_sBoxShape')]
-
- # sizes are fractions of the half width/height of the image
- roi_dict["sizes"].append((size_dict[six.b('m_dSizeX')] * 0.25 * image_width,
- size_dict[six.b('m_dSizeY')] * 0.25 * image_height,
- size_dict[six.b('m_dSizeZ')]))
- return roi_dict
-
- def _parse_experiment_metadata(self):
- """Parse the metadata of the ND experiment
-
- """
- self._metadata_parsed['experiment'] = {
- 'description': 'unknown',
- 'loops': []
- }
-
- if self.image_metadata is None or six.b('SLxExperiment') not in self.image_metadata:
- return
-
- raw_data = self.image_metadata[six.b('SLxExperiment')]
-
- if six.b('wsApplicationDesc') in raw_data:
- self._metadata_parsed['experiment']['description'] = raw_data[six.b('wsApplicationDesc')].decode('utf8')
-
- if six.b('uLoopPars') in raw_data:
- self._metadata_parsed['experiment']['loops'] = self._parse_loop_data(raw_data[six.b('uLoopPars')])
-
- def _parse_loop_data(self, loop_data):
- """Parse the experimental loop data
-
- Args:
- loop_data: dictionary of experiment loops
-
- Returns:
- list: list of the parsed loops
-
- """
- loops = get_loops_from_data(loop_data)
-
- # take into account the absolute time in ms
- time_offset = 0
-
- parsed_loops = []
-
- for loop in loops:
- # duration of this loop
- duration = get_from_dict_if_exists('dDuration', loop) or 0
- interval = determine_sampling_interval(duration, loop)
-
- # if duration is not saved, infer it
- duration = self.get_duration_from_interval_and_loops(duration, interval, loop)
-
- # uiLoopType == 6 is a stimulation loop
- is_stimulation = get_from_dict_if_exists('uiLoopType', loop) == 6
-
- parsed_loop = {
- 'start': time_offset,
- 'duration': duration,
- 'stimulation': is_stimulation,
- 'sampling_interval': interval
- }
-
- parsed_loops.append(parsed_loop)
-
- # increase the time offset
- time_offset += duration
-
- return parsed_loops
-
- def get_duration_from_interval_and_loops(self, duration, interval, loop):
- """Infers the duration of the loop from the number of measurements and the interval
-
- Args:
- duration: loop duration in milliseconds
- duration: measurement interval in milliseconds
- loop: loop dictionary
-
- Returns:
- float: the loop duration in milliseconds
-
- """
- if duration == 0 and interval > 0:
- number_of_loops = get_from_dict_if_exists('uiCount', loop)
- number_of_loops = number_of_loops if number_of_loops is not None and number_of_loops > 0 else 1
- duration = interval * number_of_loops
-
- return duration
-
-
- @property
- def image_text_info(self):
- """Textual image information
-
- Returns:
- dict: containing the textual image info
-
- """
- return read_metadata(read_chunk(self._fh, self._label_map.image_text_info), 1)
-
- @property
- def image_metadata_sequence(self):
- """Image metadata of the sequence
-
- Returns:
- dict: containing the metadata
-
- """
- return read_metadata(read_chunk(self._fh, self._label_map.image_metadata_sequence), 1)
-
- @property
- def image_calibration(self):
- """The amount of pixels per micron.
-
- Returns:
- dict: pixels per micron
- """
- return read_metadata(read_chunk(self._fh, self._label_map.image_calibration), 1)
-
- @property
- def image_attributes(self):
- """Image attributes
-
- Returns:
- dict: containing the image attributes
- """
- return read_metadata(read_chunk(self._fh, self._label_map.image_attributes), 1)
-
- @property
- def x_data(self):
- """X data
-
- Returns:
- dict: x_data
- """
- return read_array(self._fh, 'double', self._label_map.x_data)
-
- @property
- def y_data(self):
- """Y data
-
- Returns:
- dict: y_data
- """
- return read_array(self._fh, 'double', self._label_map.y_data)
-
- @property
- def z_data(self):
- """Z data
-
- Returns:
- dict: z_data
- """
- return read_array(self._fh, 'double', self._label_map.z_data)
-
- @property
- def roi_metadata(self):
- """Contains information about the defined ROIs: shape, position and type (reference/background/stimulation).
-
- Returns:
- dict: ROI metadata dictionary
- """
- return read_metadata(read_chunk(self._fh, self._label_map.roi_metadata), 1)
-
- @property
- def pfs_status(self):
- """Perfect focus system (PFS) status
-
- Returns:
- dict: Perfect focus system (PFS) status
-
- """
- return read_array(self._fh, 'int', self._label_map.pfs_status)
-
- @property
- def pfs_offset(self):
- """Perfect focus system (PFS) offset
-
- Returns:
- dict: Perfect focus system (PFS) offset
-
- """
- return read_array(self._fh, 'int', self._label_map.pfs_offset)
-
- @property
- def camera_exposure_time(self):
- """Exposure time information
-
- Returns:
- dict: Camera exposure time
-
- """
- return read_array(self._fh, 'double', self._label_map.camera_exposure_time)
-
- @property
- def lut_data(self):
- """LUT information
-
- Returns:
- dict: LUT information
-
- """
- return xmltodict.parse(read_chunk(self._fh, self._label_map.lut_data))
-
- @property
- def grabber_settings(self):
- """Grabber settings
-
- Returns:
- dict: Acquisition settings
-
- """
- return xmltodict.parse(read_chunk(self._fh, self._label_map.grabber_settings))
-
- @property
- def custom_data(self):
- """Custom user data
-
- Returns:
- dict: custom user data
-
- """
- return xmltodict.parse(read_chunk(self._fh, self._label_map.custom_data))
-
- @property
- def app_info(self):
- """NIS elements application info
-
- Returns:
- dict: (Version) information of the NIS Elements application
-
- """
- return xmltodict.parse(read_chunk(self._fh, self._label_map.app_info))
-
- @property
- def camera_temp(self):
- """Camera temperature
-
- Yields:
- float: the temperature
-
- """
- camera_temp = read_array(self._fh, 'double', self._label_map.camera_temp)
- if camera_temp:
- for temp in map(lambda x: round(x * 100.0, 2), camera_temp):
- yield temp
-
- @property
- def acquisition_times(self):
- """Acquisition times
-
- Yields:
- float: the acquisition time
-
- """
- acquisition_times = read_array(self._fh, 'double', self._label_map.acquisition_times)
- if acquisition_times:
- for acquisition_time in map(lambda x: x / 1000.0, acquisition_times):
- yield acquisition_time
-
- @property
- def image_metadata(self):
- """Image metadata
-
- Returns:
- dict: Extra image metadata
-
- """
- if self._label_map.image_metadata:
- return read_metadata(read_chunk(self._fh, self._label_map.image_metadata), 1)
|