|
|
- # -*- coding: utf-8 -*-
-
- from nd2reader.model import Image, ImageSet
- from nd2reader.parser import Nd2Parser
- import six
-
-
- class Nd2(Nd2Parser):
- """
- Allows easy access to NIS Elements .nd2 image files.
-
- """
- def __init__(self, filename):
- super(Nd2, self).__init__(filename)
- self._filename = filename
-
- def __repr__(self):
- return "\n".join(["<ND2 %s>" % self._filename,
- "Created: %s" % self._absolute_start.strftime("%Y-%m-%d %H:%M:%S"),
- "Image size: %sx%s (HxW)" % (self.height, self.width),
- "Image cycles: %s" % len(self.time_indexes),
- "Channels: %s" % ", ".join(["'%s'" % str(channel) for channel in self.channels]),
- "Fields of View: %s" % len(self.fields_of_view),
- "Z-Levels: %s" % len(self.z_levels)
- ])
-
- def __len__(self):
- """
- This should be the total number of images in the ND2, but it may be inaccurate. If the ND2 contains a
- different number of images in a cycle (i.e. there are "gap" images) it will be higher than reality.
-
- :rtype: int
-
- """
- return self._image_count * self._channel_count
-
- def __getitem__(self, item):
- """
- Allows slicing ND2s.
-
- >>> nd2 = Nd2("my_images.nd2")
- >>> image = nd2[16] # gets 17th frame
- >>> for image in nd2[100:200]: # iterate over the 100th to 200th images
- >>> do_something(image.data)
- >>> for image in nd2[::-1]: # iterate backwards
- >>> do_something(image.data)
- >>> for image in nd2[37:422:17]: # do something super weird if you really want to
- >>> do_something(image.data)
-
- :type item: int or slice
- :rtype: nd2reader.model.Image() or generator
-
- """
- if isinstance(item, int):
- try:
- channel_offset = item % len(self.channels)
- fov = self._calculate_field_of_view(item)
- channel = self._calculate_channel(item)
- z_level = self._calculate_z_level(item)
- timestamp, raw_image_data = self._get_raw_image_data(item, channel_offset)
- image = Image(timestamp, raw_image_data, fov, channel, z_level, self.height, self.width)
- except (TypeError, ValueError):
- return None
- else:
- return image
- elif isinstance(item, slice):
- return self._slice(item.start, item.stop, item.step)
- raise IndexError
-
- def _slice(self, start, stop, step):
- """
- Allows for iteration over a selection of the entire dataset.
-
- :type start: int
- :type stop: int
- :type step: int
- :rtype: nd2reader.model.Image() or None
-
- """
- start = start if start is not None else 0
- step = step if step is not None else 1
- stop = stop if stop is not None else len(self)
- # This weird thing with the step allows you to iterate backwards over the images
- for i in range(start, stop)[::step]:
- yield self[i]
-
- @property
- def image_sets(self):
- """
- Iterates over groups of related images. This is useful if your ND2 contains multiple fields of view.
- A typical use case might be that you have, say, four areas of interest that you're monitoring, and every
- minute you take a bright field and GFP image of each one. For each cycle, this method would produce four
- ImageSet objects, each containing one bright field and one GFP image.
-
- :return: model.ImageSet()
-
- """
- for time_index in self.time_indexes:
- image_set = ImageSet()
- for fov in self.fields_of_view:
- for channel_name in self.channels:
- for z_level in self.z_levels:
- image = self.get_image(time_index, fov, channel_name, z_level)
- if image is not None:
- image_set.add(image)
- yield image_set
-
- @property
- def height(self):
- """
- :return: height of each image, in pixels
- :rtype: int
-
- """
- return self.metadata[six.b('ImageAttributes')][six.b('SLxImageAttributes')][six.b('uiHeight')]
-
- @property
- def width(self):
- """
- :return: width of each image, in pixels
- :rtype: int
-
- """
- return self.metadata[six.b('ImageAttributes')][six.b('SLxImageAttributes')][six.b('uiWidth')]
-
- def _calculate_field_of_view(self, frame_number):
- images_per_cycle = len(self.z_levels) * len(self.channels)
- return int((frame_number - (frame_number % images_per_cycle)) / images_per_cycle) % len(self.fields_of_view)
-
- def _calculate_channel(self, frame_number):
- return self._channels[frame_number % len(self.channels)]
-
- def _calculate_z_level(self, frame_number):
- return self.z_levels[int(((frame_number - (frame_number % len(self.channels))) / len(self.channels)) % len(self.z_levels))]
-
- def get_image(self, time_index, field_of_view, channel_name, z_level):
- """
- Returns an Image if data exists for the given parameters, otherwise returns None. In general, you should avoid
- using this method unless you're very familiar with the structure of ND2 files. If you have a use case that
- cannot be met by the `__iter__` or `image_sets` methods above, please create an issue on Github.
-
- :param time_index: the frame number
- :type time_index: int
- :param field_of_view: the label for the place in the XY-plane where this image was taken.
- :type field_of_view: int
- :param channel_name: the name of the color of this image
- :type channel_name: str
- :param z_level: the label for the location in the Z-plane where this image was taken.
- :type z_level: int
- :rtype: nd2reader.model.Image() or None
-
- """
- image_group_number = self._calculate_image_group_number(time_index, field_of_view, z_level)
- try:
- timestamp, raw_image_data = self._get_raw_image_data(image_group_number, self._channel_offset[channel_name])
- image = Image(timestamp, raw_image_data, field_of_view, channel_name, z_level, self.height, self.width)
- except TypeError:
- return None
- else:
- return image
|