Tesi magistrale
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

80 lines
3.1 KiB

\chapter{Metodi}
\label{cap:methods}
%%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%% %%%%%%%%%
\section{Stabilizzazione meccanica}
\label{sec:stabilization}
Nonostante l'isolamento meccanico fornito dagli elastomeri e dal
tavolo ottico la posizione del campione rispetto al centro
dell'obiettivo e la quota del piano focale sono soggette a
fluttuazioni e derive.
Gli effetti più evidenti e rilevabili sono rapide oscillazioni della
posizione del campione dovute a vibrazioni acustiche residue e una
progressive deriva rispetto alla posizione fissata che diventa
significativa ($> \SI{100}{\nm}$) per tempi di osservazione di
diversi minuti.
Per quantificare quest'effetto viene usato un apposito campione in cui
diverse microsfere in silice, di diametro \SI{0.5}{\um}, vengono
immobilizzate in uno strato di nitrocellulosa depositato nella
superficie interna del vetrino coprioggetti.
Le varie fasi per la preparazione di questo campione sono descritte
nei particolari nell'appendice \ref{app:protocols}, protocollo
\ref{proto:silica_beads_flow_cell}.
Le microsfere immobilizzate nel campione possono essere messe a fuoco
e visualizzate attraverso il sistema di microscopia a luce trasmessa.
Una volta selezionata e messa a fuoco una microsfera, analizzando
l'immagine prodotta da uno dei due sensori CMOS è possibile calcolare
le coordinate (in pixel) del suo centroide:
\begin{equation}
(x_{cen}, y_{cen}) =
\frac{
\sum_{(x, y)} (x, y) I(x, y)
}{
\sum_{(x, y)} I(x, y)
}
\end{equation}
Per evitare di considerare altre microsfere o imperfezioni sul campione
si sceglie di effettuare il calcolo del centroide limitando la regione
dell'immagine utilizzata a un rettangolo nel quale una microsfera è
sufficientemente isolata.
Ricalcolando il centroide intervalli temporali fissati è possibile
osservare la deriva della posizione (x, y) della microsfera.
Inoltre è possibile sfruttare questo stesso campione per effettuare
una calibrazione del fattore di conversione pixel/nm lungo due assi
ortogonali.
Per effettuare la calibrazione, dopo aver calcolato il centroide
della microsfera, si sposta la posizione dal campione lungo uno dei
due assi di una distanza ben definita, utilizzando il traslatore
piezoelettrico. A questo punto, calcolando la nuova posizione del
centroide si ottiene il rapporto tra lo spostamento comandato al
traslatore (in \si{\nm}) e la variazione del centroide (in pixel).
Ripetendo questa operazione in sequenza per vari punti si ottiene
una curva di calibrazione per l'asse scansionata, dalla quale è
possibile estratte la costante di proporzionalità con un \textit{fit}
lineare.
Risulta più complesso invece stimare la deriva del piano focale:
per questo motivo è stato sviluppato
\section{Calibrazione parametri trappole}
\label{sec:calibration}
\section{Retroazione AOM e \textit{force-clamp}}
\label{sec:force-clamp}
\section{Saggio a tre sfere}
\label{sec:three-beads}
\section{Fluorescenza di singola molecole}
\label{sec:single_molecule_fluorescence}
\section{TIRF e illuminazione a modi di galleria}
\label{sec:gallery_mode}