|
package p2p
|
|
|
|
import (
|
|
"context"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"math"
|
|
"math/rand"
|
|
"net"
|
|
"net/url"
|
|
"runtime/debug"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
"sync"
|
|
"time"
|
|
|
|
"github.com/gogo/protobuf/proto"
|
|
"github.com/google/orderedcode"
|
|
dbm "github.com/tendermint/tm-db"
|
|
|
|
"github.com/tendermint/tendermint/libs/cmap"
|
|
"github.com/tendermint/tendermint/libs/log"
|
|
"github.com/tendermint/tendermint/libs/service"
|
|
tmconn "github.com/tendermint/tendermint/p2p/conn"
|
|
p2pproto "github.com/tendermint/tendermint/proto/tendermint/p2p"
|
|
)
|
|
|
|
// PeerAddress is a peer address URL. It differs from Endpoint in that the
|
|
// address hostname may be expanded into multiple IP addresses (thus multiple
|
|
// endpoints).
|
|
//
|
|
// If the URL is opaque, i.e. of the form "scheme:<opaque>", then the opaque
|
|
// part has to contain either the node ID or a node ID and path in the form
|
|
// "scheme:<nodeid>@<path>".
|
|
type PeerAddress struct {
|
|
ID NodeID
|
|
Protocol Protocol
|
|
Hostname string
|
|
Port uint16
|
|
Path string
|
|
}
|
|
|
|
// ParsePeerAddress parses a peer address URL into a PeerAddress,
|
|
// normalizing and validating it.
|
|
func ParsePeerAddress(urlString string) (PeerAddress, error) {
|
|
url, err := url.Parse(urlString)
|
|
if err != nil || url == nil {
|
|
return PeerAddress{}, fmt.Errorf("invalid peer address %q: %w", urlString, err)
|
|
}
|
|
|
|
address := PeerAddress{}
|
|
|
|
// If the URL is opaque, i.e. in the form "scheme:<opaque>", we specify the
|
|
// opaque bit to be either a node ID or a node ID and path in the form
|
|
// "scheme:<nodeid>@<path>".
|
|
if url.Opaque != "" {
|
|
parts := strings.Split(url.Opaque, "@")
|
|
if len(parts) > 2 {
|
|
return PeerAddress{}, fmt.Errorf("invalid address format %q, unexpected @", urlString)
|
|
}
|
|
address.ID, err = NewNodeID(parts[0])
|
|
if err != nil {
|
|
return PeerAddress{}, fmt.Errorf("invalid peer ID %q: %w", parts[0], err)
|
|
}
|
|
if len(parts) == 2 {
|
|
address.Path = parts[1]
|
|
}
|
|
return address, nil
|
|
}
|
|
|
|
// Otherwise, just parse a normal networked URL.
|
|
address.ID, err = NewNodeID(url.User.Username())
|
|
if err != nil {
|
|
return PeerAddress{}, fmt.Errorf("invalid peer ID %q: %w", url.User.Username(), err)
|
|
}
|
|
|
|
if url.Scheme != "" {
|
|
address.Protocol = Protocol(strings.ToLower(url.Scheme))
|
|
} else {
|
|
address.Protocol = defaultProtocol
|
|
}
|
|
|
|
address.Hostname = strings.ToLower(url.Hostname())
|
|
|
|
if portString := url.Port(); portString != "" {
|
|
port64, err := strconv.ParseUint(portString, 10, 16)
|
|
if err != nil {
|
|
return PeerAddress{}, fmt.Errorf("invalid port %q: %w", portString, err)
|
|
}
|
|
address.Port = uint16(port64)
|
|
}
|
|
|
|
// NOTE: URL paths are case-sensitive, so we don't lowercase them.
|
|
address.Path = url.Path
|
|
if url.RawPath != "" {
|
|
address.Path = url.RawPath
|
|
}
|
|
if url.RawQuery != "" {
|
|
address.Path += "?" + url.RawQuery
|
|
}
|
|
if url.RawFragment != "" {
|
|
address.Path += "#" + url.RawFragment
|
|
}
|
|
if address.Path != "" && address.Path[0] != '/' && address.Path[0] != '#' {
|
|
address.Path = "/" + address.Path
|
|
}
|
|
|
|
return address, address.Validate()
|
|
}
|
|
|
|
// Resolve resolves a PeerAddress into a set of Endpoints, by expanding
|
|
// out a DNS hostname to IP addresses.
|
|
func (a PeerAddress) Resolve(ctx context.Context) ([]Endpoint, error) {
|
|
// If there is no hostname, this is an opaque URL in the form
|
|
// "scheme:<opaque>".
|
|
if a.Hostname == "" {
|
|
return []Endpoint{{
|
|
PeerID: a.ID,
|
|
Protocol: a.Protocol,
|
|
Path: a.Path,
|
|
}}, nil
|
|
}
|
|
|
|
ips, err := net.DefaultResolver.LookupIP(ctx, "ip", a.Hostname)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
endpoints := make([]Endpoint, len(ips))
|
|
for i, ip := range ips {
|
|
endpoints[i] = Endpoint{
|
|
PeerID: a.ID,
|
|
Protocol: a.Protocol,
|
|
IP: ip,
|
|
Port: a.Port,
|
|
Path: a.Path,
|
|
}
|
|
}
|
|
return endpoints, nil
|
|
}
|
|
|
|
// Validates validates a PeerAddress.
|
|
func (a PeerAddress) Validate() error {
|
|
if a.Protocol == "" {
|
|
return errors.New("no protocol")
|
|
}
|
|
if a.ID == "" {
|
|
return errors.New("no peer ID")
|
|
} else if err := a.ID.Validate(); err != nil {
|
|
return fmt.Errorf("invalid peer ID: %w", err)
|
|
}
|
|
if a.Port > 0 && a.Hostname == "" {
|
|
return errors.New("cannot specify port without hostname")
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// String formats the address as a URL string.
|
|
func (a PeerAddress) String() string {
|
|
// Handle opaque URLs.
|
|
if a.Hostname == "" {
|
|
s := fmt.Sprintf("%s:%s", a.Protocol, a.ID)
|
|
if a.Path != "" {
|
|
s += "@" + a.Path
|
|
}
|
|
return s
|
|
}
|
|
|
|
s := fmt.Sprintf("%s://%s@%s", a.Protocol, a.ID, a.Hostname)
|
|
if a.Port > 0 {
|
|
s += ":" + strconv.Itoa(int(a.Port))
|
|
}
|
|
s += a.Path // We've already normalized the path with appropriate prefix in ParsePeerAddress()
|
|
return s
|
|
}
|
|
|
|
// PeerStatus specifies peer statuses.
|
|
type PeerStatus string
|
|
|
|
const (
|
|
PeerStatusNew = PeerStatus("new") // New peer which we haven't tried to contact yet.
|
|
PeerStatusUp = PeerStatus("up") // Peer which we have an active connection to.
|
|
PeerStatusDown = PeerStatus("down") // Peer which we're temporarily disconnected from.
|
|
PeerStatusRemoved = PeerStatus("removed") // Peer which has been removed.
|
|
PeerStatusBanned = PeerStatus("banned") // Peer which is banned for misbehavior.
|
|
)
|
|
|
|
// PeerError is a peer error reported by a reactor via the Error channel. The
|
|
// severity may cause the peer to be disconnected or banned depending on policy.
|
|
type PeerError struct {
|
|
PeerID NodeID
|
|
Err error
|
|
Severity PeerErrorSeverity
|
|
}
|
|
|
|
// PeerErrorSeverity determines the severity of a peer error.
|
|
type PeerErrorSeverity string
|
|
|
|
const (
|
|
PeerErrorSeverityLow PeerErrorSeverity = "low" // Mostly ignored.
|
|
PeerErrorSeverityHigh PeerErrorSeverity = "high" // May disconnect.
|
|
PeerErrorSeverityCritical PeerErrorSeverity = "critical" // Ban.
|
|
)
|
|
|
|
// PeerUpdatesCh defines a wrapper around a PeerUpdate go channel that allows
|
|
// a reactor to listen for peer updates and safely close it when stopping.
|
|
type PeerUpdatesCh struct {
|
|
closeOnce sync.Once
|
|
|
|
// updatesCh defines the go channel in which the router sends peer updates to
|
|
// reactors. Each reactor will have its own PeerUpdatesCh to listen for updates
|
|
// from.
|
|
updatesCh chan PeerUpdate
|
|
|
|
// doneCh is used to signal that a PeerUpdatesCh is closed. It is the
|
|
// reactor's responsibility to invoke Close.
|
|
doneCh chan struct{}
|
|
}
|
|
|
|
// NewPeerUpdates returns a reference to a new PeerUpdatesCh.
|
|
func NewPeerUpdates(updatesCh chan PeerUpdate) *PeerUpdatesCh {
|
|
return &PeerUpdatesCh{
|
|
updatesCh: updatesCh,
|
|
doneCh: make(chan struct{}),
|
|
}
|
|
}
|
|
|
|
// Updates returns a read-only go channel where a consuming reactor can listen
|
|
// for peer updates sent from the router.
|
|
func (puc *PeerUpdatesCh) Updates() <-chan PeerUpdate {
|
|
return puc.updatesCh
|
|
}
|
|
|
|
// Close closes the PeerUpdatesCh channel. It should only be closed by the respective
|
|
// reactor when stopping and ensure nothing is listening for updates.
|
|
//
|
|
// NOTE: After a PeerUpdatesCh is closed, the router may safely assume it can no
|
|
// longer send on the internal updatesCh, however it should NEVER explicitly close
|
|
// it as that could result in panics by sending on a closed channel.
|
|
func (puc *PeerUpdatesCh) Close() {
|
|
puc.closeOnce.Do(func() {
|
|
close(puc.doneCh)
|
|
})
|
|
}
|
|
|
|
// Done returns a read-only version of the PeerUpdatesCh's internal doneCh go
|
|
// channel that should be used by a router to signal when it is safe to explicitly
|
|
// not send any peer updates.
|
|
func (puc *PeerUpdatesCh) Done() <-chan struct{} {
|
|
return puc.doneCh
|
|
}
|
|
|
|
// PeerUpdate is a peer status update for reactors.
|
|
type PeerUpdate struct {
|
|
PeerID NodeID
|
|
Status PeerStatus
|
|
}
|
|
|
|
// PeerScore is a numeric score assigned to a peer (higher is better).
|
|
type PeerScore uint16
|
|
|
|
const (
|
|
// PeerScorePersistent is added for persistent peers.
|
|
PeerScorePersistent PeerScore = 100
|
|
)
|
|
|
|
// PeerManager manages peer lifecycle information, using a peerStore for
|
|
// underlying storage. Its primary purpose is to determine which peers to
|
|
// connect to next, make sure a peer only has a single active connection (either
|
|
// inbound or outbound), and evict peers to make room for higher-scored peers.
|
|
// It does not manage actual connections (this is handled by the Router),
|
|
// only the peer lifecycle state.
|
|
//
|
|
// We track dialing and connected states independently. This allows us to accept
|
|
// an inbound connection from a peer while the router is also dialing an
|
|
// outbound connection to that same peer, which will cause the dialer to
|
|
// eventually error when attempting to mark the peer as connected. This also
|
|
// avoids race conditions where multiple goroutines may end up dialing a peer if
|
|
// an incoming connection was briefly accepted and disconnected while we were
|
|
// also dialing.
|
|
//
|
|
// For an outbound connection, the flow is as follows:
|
|
// - DialNext: returns a peer address to dial, marking the peer as dialing.
|
|
// - DialFailed: reports a dial failure, unmarking the peer as dialing.
|
|
// - Dialed: successfully dialed, unmarking as dialing and marking as connected
|
|
// (or erroring if already connected).
|
|
// - Ready: routing is up, broadcasts a PeerStatusUp peer update to subscribers.
|
|
// - Disconnected: peer disconnects, unmarking as connected and broadcasts a
|
|
// PeerStatusDown peer update.
|
|
//
|
|
// For an inbound connection, the flow is as follows:
|
|
// - Accepted: successfully accepted connection, marking as connected (or erroring
|
|
// if already connected).
|
|
// - Ready: routing is up, broadcasts a PeerStatusUp peer update to subscribers.
|
|
// - Disconnected: peer disconnects, unmarking as connected and broadcasts a
|
|
// PeerStatusDown peer update.
|
|
//
|
|
// When evicting peers, either because peers are explicitly scheduled for
|
|
// eviction or we are connected to too many peers, the flow is as follows:
|
|
// - EvictNext: if marked evict and connected, unmark evict and mark evicting.
|
|
// If beyond MaxConnected, pick lowest-scored peer and mark evicting.
|
|
// - Disconnected: unmark connected, evicting, evict, and broadcast a
|
|
// PeerStatusDown peer update.
|
|
//
|
|
// If all connection slots are full (at MaxConnections), we can use up to
|
|
// MaxConnectionsUpgrade additional connections to probe any higher-scored
|
|
// unconnected peers, and if we reach them (or they reach us) we allow the
|
|
// connection and evict a lower-scored peer. We mark the lower-scored peer as
|
|
// upgrading[from]=to to make sure no other higher-scored peers can claim the
|
|
// same one for an upgrade. The flow is as follows:
|
|
// - Accepted: if upgrade is possible, mark connected and add lower-scored to evict.
|
|
// - DialNext: if upgrade is possible, mark upgrading[from]=to and dialing.
|
|
// - DialFailed: unmark upgrading[from]=to and dialing.
|
|
// - Dialed: unmark upgrading[from]=to and dialing, mark as connected, add
|
|
// lower-scored to evict.
|
|
// - EvictNext: pick peer from evict, mark as evicting.
|
|
// - Disconnected: unmark connected, upgrading[from]=to, evict, evicting.
|
|
type PeerManager struct {
|
|
options PeerManagerOptions
|
|
wakeDialCh chan struct{} // wakes up DialNext() on relevant peer changes
|
|
wakeEvictCh chan struct{} // wakes up EvictNext() on relevant peer changes
|
|
closeCh chan struct{} // signal channel for Close()
|
|
closeOnce sync.Once
|
|
|
|
mtx sync.Mutex
|
|
store *peerStore
|
|
dialing map[NodeID]bool // peers being dialed (DialNext -> Dialed/DialFail)
|
|
upgrading map[NodeID]NodeID // peers claimed for upgrade (DialNext -> Dialed/DialFail)
|
|
connected map[NodeID]bool // connected peers (Dialed/Accepted -> Disconnected)
|
|
evict map[NodeID]bool // peers scheduled for eviction (Connected -> EvictNext)
|
|
evicting map[NodeID]bool // peers being evicted (EvictNext -> Disconnected)
|
|
subscriptions map[*PeerUpdatesCh]*PeerUpdatesCh // keyed by struct identity (address)
|
|
}
|
|
|
|
// PeerManagerOptions specifies options for a PeerManager.
|
|
type PeerManagerOptions struct {
|
|
// PersistentPeers are peers that we want to maintain persistent connections
|
|
// to. These will be scored higher than other peers, and if
|
|
// MaxConnectedUpgrade is non-zero any lower-scored peers will be evicted if
|
|
// necessary to make room for these.
|
|
PersistentPeers []NodeID
|
|
|
|
// MaxPeers is the maximum number of peers to track information about, i.e.
|
|
// store in the peer store. When exceeded, the lowest-scored unconnected peers
|
|
// will be deleted. 0 means no limit.
|
|
MaxPeers uint16
|
|
|
|
// MaxConnected is the maximum number of connected peers (inbound and
|
|
// outbound). 0 means no limit.
|
|
MaxConnected uint16
|
|
|
|
// MaxConnectedUpgrade is the maximum number of additional connections to
|
|
// use for probing any better-scored peers to upgrade to when all connection
|
|
// slots are full. 0 disables peer upgrading.
|
|
//
|
|
// For example, if we are already connected to MaxConnected peers, but we
|
|
// know or learn about better-scored peers (e.g. configured persistent
|
|
// peers) that we are not connected too, then we can probe these peers by
|
|
// using up to MaxConnectedUpgrade connections, and once connected evict the
|
|
// lowest-scored connected peers. This also works for inbound connections,
|
|
// i.e. if a higher-scored peer attempts to connect to us, we can accept
|
|
// the connection and evict a lower-scored peer.
|
|
MaxConnectedUpgrade uint16
|
|
|
|
// MinRetryTime is the minimum time to wait between retries. Retry times
|
|
// double for each retry, up to MaxRetryTime. 0 disables retries.
|
|
MinRetryTime time.Duration
|
|
|
|
// MaxRetryTime is the maximum time to wait between retries. 0 means
|
|
// no maximum, in which case the retry time will keep doubling.
|
|
MaxRetryTime time.Duration
|
|
|
|
// MaxRetryTimePersistent is the maximum time to wait between retries for
|
|
// peers listed in PersistentPeers. 0 uses MaxRetryTime instead.
|
|
MaxRetryTimePersistent time.Duration
|
|
|
|
// RetryTimeJitter is the upper bound of a random interval added to
|
|
// retry times, to avoid thundering herds. 0 disables jutter.
|
|
RetryTimeJitter time.Duration
|
|
}
|
|
|
|
// NewPeerManager creates a new peer manager.
|
|
func NewPeerManager(peerDB dbm.DB, options PeerManagerOptions) (*PeerManager, error) {
|
|
store, err := newPeerStore(peerDB)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
peerManager := &PeerManager{
|
|
options: options,
|
|
closeCh: make(chan struct{}),
|
|
|
|
// We use a buffer of size 1 for these trigger channels, with
|
|
// non-blocking sends. This ensures that if e.g. wakeDial() is called
|
|
// multiple times before the initial trigger is picked up we only
|
|
// process the trigger once.
|
|
//
|
|
// FIXME: This should maybe be a libs/sync type.
|
|
wakeDialCh: make(chan struct{}, 1),
|
|
wakeEvictCh: make(chan struct{}, 1),
|
|
|
|
store: store,
|
|
dialing: map[NodeID]bool{},
|
|
upgrading: map[NodeID]NodeID{},
|
|
connected: map[NodeID]bool{},
|
|
evict: map[NodeID]bool{},
|
|
evicting: map[NodeID]bool{},
|
|
subscriptions: map[*PeerUpdatesCh]*PeerUpdatesCh{},
|
|
}
|
|
if err = peerManager.configurePeers(); err != nil {
|
|
return nil, err
|
|
}
|
|
if err = peerManager.prunePeers(); err != nil {
|
|
return nil, err
|
|
}
|
|
return peerManager, nil
|
|
}
|
|
|
|
// configurePeers configures peers in the peer store with ephemeral runtime
|
|
// configuration, e.g. setting peerInfo.Persistent based on
|
|
// PeerManagerOptions.PersistentPeers. The caller must hold the mutex lock.
|
|
func (m *PeerManager) configurePeers() error {
|
|
for _, peerID := range m.options.PersistentPeers {
|
|
if peer, ok := m.store.Get(peerID); ok {
|
|
peer.Persistent = true
|
|
if err := m.store.Set(peer); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// prunePeers removes peers from the peer store if it contains more than
|
|
// MaxPeers peers. The lowest-scored non-connected peers are removed.
|
|
// The caller must hold the mutex lock.
|
|
func (m *PeerManager) prunePeers() error {
|
|
if m.options.MaxPeers == 0 || m.store.Size() <= int(m.options.MaxPeers) {
|
|
return nil
|
|
}
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
ranked := m.store.Ranked()
|
|
for i := len(ranked) - 1; i >= 0; i-- {
|
|
peerID := ranked[i].ID
|
|
switch {
|
|
case m.store.Size() <= int(m.options.MaxPeers):
|
|
break
|
|
case m.dialing[peerID]:
|
|
case m.connected[peerID]:
|
|
case m.evicting[peerID]:
|
|
default:
|
|
if err := m.store.Delete(peerID); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Close closes the peer manager, releasing resources allocated with it
|
|
// (specifically any running goroutines).
|
|
func (m *PeerManager) Close() {
|
|
m.closeOnce.Do(func() {
|
|
close(m.closeCh)
|
|
})
|
|
}
|
|
|
|
// Add adds a peer to the manager, given as an address. If the peer already
|
|
// exists, the address is added to it.
|
|
func (m *PeerManager) Add(address PeerAddress) error {
|
|
if err := address.Validate(); err != nil {
|
|
return err
|
|
}
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
peer, ok := m.store.Get(address.ID)
|
|
if !ok {
|
|
peer = m.makePeerInfo(address.ID)
|
|
}
|
|
if _, ok := peer.AddressInfo[address.String()]; !ok {
|
|
peer.AddressInfo[address.String()] = &peerAddressInfo{Address: address}
|
|
}
|
|
if err := m.store.Set(peer); err != nil {
|
|
return err
|
|
}
|
|
if err := m.prunePeers(); err != nil {
|
|
return err
|
|
}
|
|
m.wakeDial()
|
|
return nil
|
|
}
|
|
|
|
// Advertise returns a list of peer addresses to advertise to a peer.
|
|
//
|
|
// FIXME: This is fairly naïve and only returns the addresses of the
|
|
// highest-ranked peers.
|
|
func (m *PeerManager) Advertise(peerID NodeID, limit uint16) []PeerAddress {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
addresses := make([]PeerAddress, 0, limit)
|
|
for _, peer := range m.store.Ranked() {
|
|
if peer.ID == peerID {
|
|
continue
|
|
}
|
|
for _, addressInfo := range peer.AddressInfo {
|
|
if len(addresses) >= int(limit) {
|
|
return addresses
|
|
}
|
|
addresses = append(addresses, addressInfo.Address)
|
|
}
|
|
}
|
|
return addresses
|
|
}
|
|
|
|
// makePeerInfo creates a peerInfo for a new peer.
|
|
func (m *PeerManager) makePeerInfo(id NodeID) peerInfo {
|
|
isPersistent := false
|
|
for _, p := range m.options.PersistentPeers {
|
|
if id == p {
|
|
isPersistent = true
|
|
break
|
|
}
|
|
}
|
|
return peerInfo{
|
|
ID: id,
|
|
Persistent: isPersistent,
|
|
AddressInfo: map[string]*peerAddressInfo{},
|
|
}
|
|
}
|
|
|
|
// Subscribe subscribes to peer updates. The caller must consume the peer
|
|
// updates in a timely fashion and close the subscription when done, since
|
|
// delivery is guaranteed and will block peer connection/disconnection
|
|
// otherwise.
|
|
func (m *PeerManager) Subscribe() *PeerUpdatesCh {
|
|
// FIXME: We may want to use a size 1 buffer here. When the router
|
|
// broadcasts a peer update it has to loop over all of the
|
|
// subscriptions, and we want to avoid blocking and waiting for a
|
|
// context switch before continuing to the next subscription. This also
|
|
// prevents tail latencies from compounding across updates. We also want
|
|
// to make sure the subscribers are reasonably in sync, so it should be
|
|
// kept at 1. However, this should be benchmarked first.
|
|
peerUpdates := NewPeerUpdates(make(chan PeerUpdate))
|
|
m.mtx.Lock()
|
|
m.subscriptions[peerUpdates] = peerUpdates
|
|
m.mtx.Unlock()
|
|
|
|
go func() {
|
|
<-peerUpdates.Done()
|
|
m.mtx.Lock()
|
|
delete(m.subscriptions, peerUpdates)
|
|
m.mtx.Unlock()
|
|
}()
|
|
return peerUpdates
|
|
}
|
|
|
|
// broadcast broadcasts a peer update to all subscriptions. The caller must
|
|
// already hold the mutex lock. This means the mutex is held for the duration
|
|
// of the broadcast, which we want to make sure all subscriptions receive all
|
|
// updates in the same order.
|
|
//
|
|
// FIXME: Consider using more fine-grained mutexes here, and/or a channel to
|
|
// enforce ordering of updates.
|
|
func (m *PeerManager) broadcast(peerUpdate PeerUpdate) {
|
|
for _, sub := range m.subscriptions {
|
|
select {
|
|
case sub.updatesCh <- peerUpdate:
|
|
case <-sub.doneCh:
|
|
}
|
|
}
|
|
}
|
|
|
|
// DialNext finds an appropriate peer address to dial, and marks it as dialing.
|
|
// If no peer is found, or all connection slots are full, it blocks until one
|
|
// becomes available. The caller must call Dialed() or DialFailed() for the
|
|
// returned peer. The context can be used to cancel the call.
|
|
func (m *PeerManager) DialNext(ctx context.Context) (NodeID, PeerAddress, error) {
|
|
for {
|
|
id, address, err := m.TryDialNext()
|
|
if err != nil || id != "" {
|
|
return id, address, err
|
|
}
|
|
select {
|
|
case <-m.wakeDialCh:
|
|
case <-ctx.Done():
|
|
return "", PeerAddress{}, ctx.Err()
|
|
}
|
|
}
|
|
}
|
|
|
|
// TryDialNext is equivalent to DialNext(), but immediately returns an empty
|
|
// peer ID if no peers or connection slots are available.
|
|
func (m *PeerManager) TryDialNext() (NodeID, PeerAddress, error) {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
// We allow dialing MaxConnected+MaxConnectedUpgrade peers. Including
|
|
// MaxConnectedUpgrade allows us to probe additional peers that have a
|
|
// higher score than any other peers, and if successful evict it.
|
|
if m.options.MaxConnected > 0 &&
|
|
len(m.connected)+len(m.dialing) >= int(m.options.MaxConnected)+int(m.options.MaxConnectedUpgrade) {
|
|
return "", PeerAddress{}, nil
|
|
}
|
|
|
|
for _, peer := range m.store.Ranked() {
|
|
if m.dialing[peer.ID] || m.connected[peer.ID] {
|
|
continue
|
|
}
|
|
|
|
for _, addressInfo := range peer.AddressInfo {
|
|
if time.Since(addressInfo.LastDialFailure) < m.retryDelay(addressInfo.DialFailures, peer.Persistent) {
|
|
continue
|
|
}
|
|
|
|
// We now have an eligible address to dial. If we're full but have
|
|
// upgrade capacity (as checked above), we find a lower-scored peer
|
|
// we can replace and mark it as upgrading so noone else claims it.
|
|
//
|
|
// If we don't find one, there is no point in trying additional
|
|
// peers, since they will all have the same or lower score than this
|
|
// peer (since they're ordered by score via peerStore.Ranked).
|
|
if m.options.MaxConnected > 0 && len(m.connected) >= int(m.options.MaxConnected) {
|
|
upgradeFromPeer := m.findUpgradeCandidate(peer.ID, peer.Score())
|
|
if upgradeFromPeer == "" {
|
|
return "", PeerAddress{}, nil
|
|
}
|
|
m.upgrading[upgradeFromPeer] = peer.ID
|
|
}
|
|
|
|
m.dialing[peer.ID] = true
|
|
return peer.ID, addressInfo.Address, nil
|
|
}
|
|
}
|
|
return "", PeerAddress{}, nil
|
|
}
|
|
|
|
// wakeDial is used to notify DialNext about changes that *may* cause new
|
|
// peers to become eligible for dialing, such as peer disconnections and
|
|
// retry timeouts.
|
|
func (m *PeerManager) wakeDial() {
|
|
// The channel has a 1-size buffer. A non-blocking send ensures
|
|
// we only queue up at most 1 trigger between each DialNext().
|
|
select {
|
|
case m.wakeDialCh <- struct{}{}:
|
|
default:
|
|
}
|
|
}
|
|
|
|
// wakeEvict is used to notify EvictNext about changes that *may* cause
|
|
// peers to become eligible for eviction, such as peer upgrades.
|
|
func (m *PeerManager) wakeEvict() {
|
|
// The channel has a 1-size buffer. A non-blocking send ensures
|
|
// we only queue up at most 1 trigger between each EvictNext().
|
|
select {
|
|
case m.wakeEvictCh <- struct{}{}:
|
|
default:
|
|
}
|
|
}
|
|
|
|
// retryDelay calculates a dial retry delay using exponential backoff, based on
|
|
// retry settings in PeerManagerOptions. If MinRetryTime is 0, this returns
|
|
// MaxInt64 (i.e. an infinite retry delay, effectively disabling retries).
|
|
func (m *PeerManager) retryDelay(failures uint32, persistent bool) time.Duration {
|
|
if failures == 0 {
|
|
return 0
|
|
}
|
|
if m.options.MinRetryTime == 0 {
|
|
return time.Duration(math.MaxInt64)
|
|
}
|
|
maxDelay := m.options.MaxRetryTime
|
|
if persistent && m.options.MaxRetryTimePersistent > 0 {
|
|
maxDelay = m.options.MaxRetryTimePersistent
|
|
}
|
|
|
|
delay := m.options.MinRetryTime * time.Duration(math.Pow(2, float64(failures)))
|
|
if maxDelay > 0 && delay > maxDelay {
|
|
delay = maxDelay
|
|
}
|
|
// FIXME: This should use a PeerManager-scoped RNG.
|
|
delay += time.Duration(rand.Int63n(int64(m.options.RetryTimeJitter))) // nolint:gosec
|
|
return delay
|
|
}
|
|
|
|
// DialFailed reports a failed dial attempt. This will make the peer available
|
|
// for dialing again when appropriate.
|
|
//
|
|
// FIXME: This should probably delete or mark bad addresses/peers after some time.
|
|
func (m *PeerManager) DialFailed(peerID NodeID, address PeerAddress) error {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
delete(m.dialing, peerID)
|
|
for from, to := range m.upgrading {
|
|
if to == peerID {
|
|
delete(m.upgrading, from) // Unmark failed upgrade attempt.
|
|
}
|
|
}
|
|
|
|
peer, ok := m.store.Get(peerID)
|
|
if !ok { // Peer may have been removed while dialing, ignore.
|
|
return nil
|
|
}
|
|
addressInfo, ok := peer.AddressInfo[address.String()]
|
|
if !ok {
|
|
return nil // Assume the address has been removed, ignore.
|
|
}
|
|
addressInfo.LastDialFailure = time.Now().UTC()
|
|
addressInfo.DialFailures++
|
|
if err := m.store.Set(peer); err != nil {
|
|
return err
|
|
}
|
|
|
|
// We spawn a goroutine that notifies DialNext() again when the retry
|
|
// timeout has elapsed, so that we can consider dialing it again.
|
|
go func() {
|
|
retryDelay := m.retryDelay(addressInfo.DialFailures, peer.Persistent)
|
|
if retryDelay == time.Duration(math.MaxInt64) {
|
|
return
|
|
}
|
|
// Use an explicit timer with deferred cleanup instead of
|
|
// time.After(), to avoid leaking goroutines on PeerManager.Close().
|
|
timer := time.NewTimer(retryDelay)
|
|
defer timer.Stop()
|
|
select {
|
|
case <-timer.C:
|
|
m.wakeDial()
|
|
case <-m.closeCh:
|
|
}
|
|
}()
|
|
|
|
m.wakeDial()
|
|
return nil
|
|
}
|
|
|
|
// Dialed marks a peer as successfully dialed. Any further incoming connections
|
|
// will be rejected, and once disconnected the peer may be dialed again.
|
|
func (m *PeerManager) Dialed(peerID NodeID, address PeerAddress) error {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
delete(m.dialing, peerID)
|
|
|
|
var upgradeFromPeer NodeID
|
|
for from, to := range m.upgrading {
|
|
if to == peerID {
|
|
delete(m.upgrading, from)
|
|
upgradeFromPeer = from
|
|
// Don't break, just in case this peer was marked as upgrading for
|
|
// multiple lower-scored peers (shouldn't really happen).
|
|
}
|
|
}
|
|
|
|
if m.connected[peerID] {
|
|
return fmt.Errorf("peer %v is already connected", peerID)
|
|
}
|
|
if m.options.MaxConnected > 0 &&
|
|
len(m.connected) >= int(m.options.MaxConnected)+int(m.options.MaxConnectedUpgrade) {
|
|
return fmt.Errorf("already connected to maximum number of peers")
|
|
}
|
|
|
|
peer, ok := m.store.Get(peerID)
|
|
if !ok {
|
|
return fmt.Errorf("peer %q was removed while dialing", peerID)
|
|
}
|
|
now := time.Now().UTC()
|
|
peer.LastConnected = now
|
|
if addressInfo, ok := peer.AddressInfo[address.String()]; ok {
|
|
addressInfo.DialFailures = 0
|
|
addressInfo.LastDialSuccess = now
|
|
// If not found, assume address has been removed.
|
|
}
|
|
if err := m.store.Set(peer); err != nil {
|
|
return err
|
|
}
|
|
|
|
if upgradeFromPeer != "" && m.options.MaxConnected > 0 &&
|
|
len(m.connected) >= int(m.options.MaxConnected) {
|
|
// Look for an even lower-scored peer that may have appeared
|
|
// since we started the upgrade.
|
|
if p, ok := m.store.Get(upgradeFromPeer); ok {
|
|
if u := m.findUpgradeCandidate(p.ID, p.Score()); u != "" {
|
|
upgradeFromPeer = u
|
|
}
|
|
}
|
|
m.evict[upgradeFromPeer] = true
|
|
}
|
|
m.connected[peerID] = true
|
|
m.wakeEvict()
|
|
|
|
return nil
|
|
}
|
|
|
|
// Accepted marks an incoming peer connection successfully accepted. If the peer
|
|
// is already connected or we don't allow additional connections then this will
|
|
// return an error.
|
|
//
|
|
// If full but MaxConnectedUpgrade is non-zero and the incoming peer is
|
|
// better-scored than any existing peers, then we accept it and evict a
|
|
// lower-scored peer.
|
|
//
|
|
// NOTE: We can't take an address here, since e.g. TCP uses a different port
|
|
// number for outbound traffic than inbound traffic, so the peer's endpoint
|
|
// wouldn't necessarily be an appropriate address to dial.
|
|
//
|
|
// FIXME: When we accept a connection from a peer, we should register that
|
|
// peer's address in the peer store so that we can dial it later. In order to do
|
|
// that, we'll need to get the remote address after all, but as noted above that
|
|
// can't be the remote endpoint since that will usually have the wrong port
|
|
// number.
|
|
func (m *PeerManager) Accepted(peerID NodeID) error {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
if m.connected[peerID] {
|
|
return fmt.Errorf("peer %q is already connected", peerID)
|
|
}
|
|
if m.options.MaxConnected > 0 &&
|
|
len(m.connected) >= int(m.options.MaxConnected)+int(m.options.MaxConnectedUpgrade) {
|
|
return fmt.Errorf("already connected to maximum number of peers")
|
|
}
|
|
|
|
peer, ok := m.store.Get(peerID)
|
|
if !ok {
|
|
peer = m.makePeerInfo(peerID)
|
|
}
|
|
|
|
// If all connections slots are full, but we allow upgrades (and we checked
|
|
// above that we have upgrade capacity), then we can look for a lower-scored
|
|
// peer to replace and if found accept the connection anyway and evict it.
|
|
var upgradeFromPeer NodeID
|
|
if m.options.MaxConnected > 0 && len(m.connected) >= int(m.options.MaxConnected) {
|
|
upgradeFromPeer = m.findUpgradeCandidate(peer.ID, peer.Score())
|
|
if upgradeFromPeer == "" {
|
|
return fmt.Errorf("already connected to maximum number of peers")
|
|
}
|
|
}
|
|
|
|
peer.LastConnected = time.Now().UTC()
|
|
if err := m.store.Set(peer); err != nil {
|
|
return err
|
|
}
|
|
|
|
m.connected[peerID] = true
|
|
if upgradeFromPeer != "" {
|
|
m.evict[upgradeFromPeer] = true
|
|
}
|
|
m.wakeEvict()
|
|
return nil
|
|
}
|
|
|
|
// Ready marks a peer as ready, broadcasting status updates to subscribers. The
|
|
// peer must already be marked as connected. This is separate from Dialed() and
|
|
// Accepted() to allow the router to set up its internal queues before reactors
|
|
// start sending messages.
|
|
func (m *PeerManager) Ready(peerID NodeID) {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
if m.connected[peerID] {
|
|
m.broadcast(PeerUpdate{
|
|
PeerID: peerID,
|
|
Status: PeerStatusUp,
|
|
})
|
|
}
|
|
}
|
|
|
|
// Disconnected unmarks a peer as connected, allowing new connections to be
|
|
// established.
|
|
func (m *PeerManager) Disconnected(peerID NodeID) error {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
delete(m.connected, peerID)
|
|
delete(m.upgrading, peerID)
|
|
delete(m.evict, peerID)
|
|
delete(m.evicting, peerID)
|
|
m.broadcast(PeerUpdate{
|
|
PeerID: peerID,
|
|
Status: PeerStatusDown,
|
|
})
|
|
m.wakeDial()
|
|
return nil
|
|
}
|
|
|
|
// EvictNext returns the next peer to evict (i.e. disconnect). If no evictable
|
|
// peers are found, the call will block until one becomes available or the
|
|
// context is cancelled.
|
|
func (m *PeerManager) EvictNext(ctx context.Context) (NodeID, error) {
|
|
for {
|
|
id, err := m.TryEvictNext()
|
|
if err != nil || id != "" {
|
|
return id, err
|
|
}
|
|
select {
|
|
case <-m.wakeEvictCh:
|
|
case <-ctx.Done():
|
|
return "", ctx.Err()
|
|
}
|
|
}
|
|
}
|
|
|
|
// TryEvictNext is equivalent to EvictNext, but immediately returns an empty
|
|
// node ID if no evictable peers are found.
|
|
func (m *PeerManager) TryEvictNext() (NodeID, error) {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
// If any connected peers are explicitly scheduled for eviction, we return a
|
|
// random one.
|
|
for peerID := range m.evict {
|
|
delete(m.evict, peerID)
|
|
if m.connected[peerID] && !m.evicting[peerID] {
|
|
m.evicting[peerID] = true
|
|
return peerID, nil
|
|
}
|
|
}
|
|
|
|
// If we're below capacity, we don't need to evict anything.
|
|
if m.options.MaxConnected == 0 ||
|
|
len(m.connected)-len(m.evicting) <= int(m.options.MaxConnected) {
|
|
return "", nil
|
|
}
|
|
|
|
// If we're above capacity, just pick the lowest-ranked peer to evict.
|
|
ranked := m.store.Ranked()
|
|
for i := len(ranked) - 1; i >= 0; i-- {
|
|
peer := ranked[i]
|
|
if m.connected[peer.ID] && !m.evicting[peer.ID] {
|
|
m.evicting[peer.ID] = true
|
|
return peer.ID, nil
|
|
}
|
|
}
|
|
|
|
return "", nil
|
|
}
|
|
|
|
// findUpgradeCandidate looks for a lower-scored peer that we could evict
|
|
// to make room for the given peer. Returns an empty ID if none is found.
|
|
// The caller must hold the mutex lock.
|
|
func (m *PeerManager) findUpgradeCandidate(id NodeID, score PeerScore) NodeID {
|
|
ranked := m.store.Ranked()
|
|
for i := len(ranked) - 1; i >= 0; i-- {
|
|
candidate := ranked[i]
|
|
switch {
|
|
case candidate.Score() >= score:
|
|
return "" // no further peers can be scored lower, due to sorting
|
|
case !m.connected[candidate.ID]:
|
|
case m.evict[candidate.ID]:
|
|
case m.evicting[candidate.ID]:
|
|
case m.upgrading[candidate.ID] != "":
|
|
default:
|
|
return candidate.ID
|
|
}
|
|
}
|
|
return ""
|
|
}
|
|
|
|
// GetHeight returns a peer's height, as reported via SetHeight. If the peer
|
|
// or height is unknown, this returns 0.
|
|
//
|
|
// FIXME: This is a temporary workaround for the peer state stored via the
|
|
// legacy Peer.Set() and Peer.Get() APIs, used to share height state between the
|
|
// consensus and mempool reactors. These dependencies should be removed from the
|
|
// reactors, and instead query this information independently via new P2P
|
|
// protocol additions.
|
|
func (m *PeerManager) GetHeight(peerID NodeID) int64 {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
peer, _ := m.store.Get(peerID)
|
|
return peer.Height
|
|
}
|
|
|
|
// SetHeight stores a peer's height, making it available via GetHeight. If the
|
|
// peer is unknown, it is created.
|
|
//
|
|
// FIXME: This is a temporary workaround for the peer state stored via the
|
|
// legacy Peer.Set() and Peer.Get() APIs, used to share height state between the
|
|
// consensus and mempool reactors. These dependencies should be removed from the
|
|
// reactors, and instead query this information independently via new P2P
|
|
// protocol additions.
|
|
func (m *PeerManager) SetHeight(peerID NodeID, height int64) error {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
peer, ok := m.store.Get(peerID)
|
|
if !ok {
|
|
peer = m.makePeerInfo(peerID)
|
|
}
|
|
peer.Height = height
|
|
return m.store.Set(peer)
|
|
}
|
|
|
|
// peerStore stores information about peers. It is not thread-safe, assuming
|
|
// it is used only by PeerManager which handles concurrency control, allowing
|
|
// it to execute multiple operations atomically via its own mutex.
|
|
//
|
|
// The entire set of peers is kept in memory, for performance. It is loaded
|
|
// from disk on initialization, and any changes are written back to disk
|
|
// (without fsync, since we can afford to lose recent writes).
|
|
type peerStore struct {
|
|
db dbm.DB
|
|
peers map[NodeID]*peerInfo
|
|
ranked []*peerInfo // cache for Ranked(), nil invalidates cache
|
|
}
|
|
|
|
// newPeerStore creates a new peer store, loading all persisted peers from the
|
|
// database into memory.
|
|
func newPeerStore(db dbm.DB) (*peerStore, error) {
|
|
store := &peerStore{
|
|
db: db,
|
|
}
|
|
if err := store.loadPeers(); err != nil {
|
|
return nil, err
|
|
}
|
|
return store, nil
|
|
}
|
|
|
|
// loadPeers loads all peers from the database into memory.
|
|
func (s *peerStore) loadPeers() error {
|
|
peers := make(map[NodeID]*peerInfo)
|
|
|
|
start, end := keyPeerInfoRange()
|
|
iter, err := s.db.Iterator(start, end)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
defer iter.Close()
|
|
for ; iter.Valid(); iter.Next() {
|
|
// FIXME: We may want to tolerate failures here, by simply logging
|
|
// the errors and ignoring the faulty peer entries.
|
|
msg := new(p2pproto.PeerInfo)
|
|
if err := proto.Unmarshal(iter.Value(), msg); err != nil {
|
|
return fmt.Errorf("invalid peer Protobuf data: %w", err)
|
|
}
|
|
peer, err := peerInfoFromProto(msg)
|
|
if err != nil {
|
|
return fmt.Errorf("invalid peer data: %w", err)
|
|
}
|
|
peers[peer.ID] = peer
|
|
}
|
|
if iter.Error() != nil {
|
|
return iter.Error()
|
|
}
|
|
s.peers = peers
|
|
s.ranked = nil // invalidate cache if populated
|
|
return nil
|
|
}
|
|
|
|
// Get fetches a peer. The boolean indicates whether the peer existed or not.
|
|
// The returned peer info is a copy, and can be mutated at will.
|
|
func (s *peerStore) Get(id NodeID) (peerInfo, bool) {
|
|
peer, ok := s.peers[id]
|
|
return peer.Copy(), ok
|
|
}
|
|
|
|
// Set stores peer data. The input data will be copied, and can safely be reused
|
|
// by the caller.
|
|
func (s *peerStore) Set(peer peerInfo) error {
|
|
if err := peer.Validate(); err != nil {
|
|
return err
|
|
}
|
|
peer = peer.Copy()
|
|
|
|
// FIXME: We may want to optimize this by avoiding saving to the database
|
|
// if there haven't been any changes to persisted fields.
|
|
bz, err := peer.ToProto().Marshal()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if err = s.db.Set(keyPeerInfo(peer.ID), bz); err != nil {
|
|
return err
|
|
}
|
|
|
|
if current, ok := s.peers[peer.ID]; !ok || current.Score() != peer.Score() {
|
|
// If the peer is new, or its score changes, we invalidate the Ranked() cache.
|
|
s.peers[peer.ID] = &peer
|
|
s.ranked = nil
|
|
} else {
|
|
// Otherwise, since s.ranked contains pointers to the old data and we
|
|
// want those pointers to remain valid with the new data, we have to
|
|
// update the existing pointer address.
|
|
*current = peer
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// Delete deletes a peer, or does nothing if it does not exist.
|
|
func (s *peerStore) Delete(id NodeID) error {
|
|
if _, ok := s.peers[id]; !ok {
|
|
return nil
|
|
}
|
|
if err := s.db.Delete(keyPeerInfo(id)); err != nil {
|
|
return err
|
|
}
|
|
delete(s.peers, id)
|
|
s.ranked = nil
|
|
return nil
|
|
}
|
|
|
|
// List retrieves all peers in an arbitrary order. The returned data is a copy,
|
|
// and can be mutated at will.
|
|
func (s *peerStore) List() []peerInfo {
|
|
peers := make([]peerInfo, 0, len(s.peers))
|
|
for _, peer := range s.peers {
|
|
peers = append(peers, peer.Copy())
|
|
}
|
|
return peers
|
|
}
|
|
|
|
// Ranked returns a list of peers ordered by score (better peers first). Peers
|
|
// with equal scores are returned in an arbitrary order. The returned list must
|
|
// not be mutated or accessed concurrently by the caller, since it returns
|
|
// pointers to internal peerStore data for performance.
|
|
//
|
|
// Ranked is used to determine both which peers to dial, which ones to evict,
|
|
// and which ones to delete completely.
|
|
//
|
|
// FIXME: For now, we simply maintain a cache in s.ranked which is invalidated
|
|
// by setting it to nil, but if necessary we should use a better data structure
|
|
// for this (e.g. a heap or ordered map).
|
|
//
|
|
// FIXME: The scoring logic is currently very naïve, see peerInfo.Score().
|
|
func (s *peerStore) Ranked() []*peerInfo {
|
|
if s.ranked != nil {
|
|
return s.ranked
|
|
}
|
|
s.ranked = make([]*peerInfo, 0, len(s.peers))
|
|
for _, peer := range s.peers {
|
|
s.ranked = append(s.ranked, peer)
|
|
}
|
|
sort.Slice(s.ranked, func(i, j int) bool {
|
|
// FIXME: If necessary, consider precomputing scores before sorting,
|
|
// to reduce the number of Score() calls.
|
|
return s.ranked[i].Score() > s.ranked[j].Score()
|
|
})
|
|
return s.ranked
|
|
}
|
|
|
|
// Size returns the number of peers in the peer store.
|
|
func (s *peerStore) Size() int {
|
|
return len(s.peers)
|
|
}
|
|
|
|
// peerInfo contains peer information stored in a peerStore.
|
|
type peerInfo struct {
|
|
ID NodeID
|
|
AddressInfo map[string]*peerAddressInfo
|
|
LastConnected time.Time
|
|
|
|
// These fields are ephemeral, i.e. not persisted to the database.
|
|
Persistent bool
|
|
Height int64
|
|
}
|
|
|
|
// peerInfoFromProto converts a Protobuf PeerInfo message to a peerInfo,
|
|
// erroring if the data is invalid.
|
|
func peerInfoFromProto(msg *p2pproto.PeerInfo) (*peerInfo, error) {
|
|
p := &peerInfo{
|
|
ID: NodeID(msg.ID),
|
|
AddressInfo: map[string]*peerAddressInfo{},
|
|
}
|
|
if msg.LastConnected != nil {
|
|
p.LastConnected = *msg.LastConnected
|
|
}
|
|
for _, addr := range msg.AddressInfo {
|
|
addressInfo, err := peerAddressInfoFromProto(addr)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
p.AddressInfo[addressInfo.Address.String()] = addressInfo
|
|
}
|
|
return p, p.Validate()
|
|
}
|
|
|
|
// ToProto converts the peerInfo to p2pproto.PeerInfo for database storage. The
|
|
// Protobuf type only contains persisted fields, while ephemeral fields are
|
|
// discarded. The returned message may contain pointers to original data, since
|
|
// it is expected to be serialized immediately.
|
|
func (p *peerInfo) ToProto() *p2pproto.PeerInfo {
|
|
msg := &p2pproto.PeerInfo{
|
|
ID: string(p.ID),
|
|
LastConnected: &p.LastConnected,
|
|
}
|
|
for _, addressInfo := range p.AddressInfo {
|
|
msg.AddressInfo = append(msg.AddressInfo, addressInfo.ToProto())
|
|
}
|
|
if msg.LastConnected.IsZero() {
|
|
msg.LastConnected = nil
|
|
}
|
|
return msg
|
|
}
|
|
|
|
// Copy returns a deep copy of the peer info.
|
|
func (p *peerInfo) Copy() peerInfo {
|
|
if p == nil {
|
|
return peerInfo{}
|
|
}
|
|
c := *p
|
|
for i, addressInfo := range c.AddressInfo {
|
|
addressInfoCopy := addressInfo.Copy()
|
|
c.AddressInfo[i] = &addressInfoCopy
|
|
}
|
|
return c
|
|
}
|
|
|
|
// Score calculates a score for the peer. Higher-scored peers will be
|
|
// preferred over lower scores.
|
|
func (p *peerInfo) Score() PeerScore {
|
|
var score PeerScore
|
|
if p.Persistent {
|
|
score += PeerScorePersistent
|
|
}
|
|
return score
|
|
}
|
|
|
|
// Validate validates the peer info.
|
|
func (p *peerInfo) Validate() error {
|
|
if p.ID == "" {
|
|
return errors.New("no peer ID")
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// peerAddressInfo contains information and statistics about a peer address.
|
|
type peerAddressInfo struct {
|
|
Address PeerAddress
|
|
LastDialSuccess time.Time
|
|
LastDialFailure time.Time
|
|
DialFailures uint32 // since last successful dial
|
|
}
|
|
|
|
// peerAddressInfoFromProto converts a Protobuf PeerAddressInfo message
|
|
// to a peerAddressInfo.
|
|
func peerAddressInfoFromProto(msg *p2pproto.PeerAddressInfo) (*peerAddressInfo, error) {
|
|
address, err := ParsePeerAddress(msg.Address)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("invalid address %q: %w", address, err)
|
|
}
|
|
addressInfo := &peerAddressInfo{
|
|
Address: address,
|
|
DialFailures: msg.DialFailures,
|
|
}
|
|
if msg.LastDialSuccess != nil {
|
|
addressInfo.LastDialSuccess = *msg.LastDialSuccess
|
|
}
|
|
if msg.LastDialFailure != nil {
|
|
addressInfo.LastDialFailure = *msg.LastDialFailure
|
|
}
|
|
return addressInfo, addressInfo.Validate()
|
|
}
|
|
|
|
// ToProto converts the address into to a Protobuf message for serialization.
|
|
func (a *peerAddressInfo) ToProto() *p2pproto.PeerAddressInfo {
|
|
msg := &p2pproto.PeerAddressInfo{
|
|
Address: a.Address.String(),
|
|
LastDialSuccess: &a.LastDialSuccess,
|
|
LastDialFailure: &a.LastDialFailure,
|
|
DialFailures: a.DialFailures,
|
|
}
|
|
if msg.LastDialSuccess.IsZero() {
|
|
msg.LastDialSuccess = nil
|
|
}
|
|
if msg.LastDialFailure.IsZero() {
|
|
msg.LastDialFailure = nil
|
|
}
|
|
return msg
|
|
}
|
|
|
|
// Copy returns a copy of the address info.
|
|
func (a *peerAddressInfo) Copy() peerAddressInfo {
|
|
return *a
|
|
}
|
|
|
|
// Validate validates the address info.
|
|
func (a *peerAddressInfo) Validate() error {
|
|
return a.Address.Validate()
|
|
}
|
|
|
|
// These are database key prefixes.
|
|
const (
|
|
prefixPeerInfo int64 = 1
|
|
)
|
|
|
|
// keyPeerInfo generates a peerInfo database key.
|
|
func keyPeerInfo(id NodeID) []byte {
|
|
key, err := orderedcode.Append(nil, prefixPeerInfo, string(id))
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return key
|
|
}
|
|
|
|
// keyPeerInfoPrefix generates start/end keys for the entire peerInfo key range.
|
|
func keyPeerInfoRange() ([]byte, []byte) {
|
|
start, err := orderedcode.Append(nil, prefixPeerInfo, "")
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
end, err := orderedcode.Append(nil, prefixPeerInfo, orderedcode.Infinity)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return start, end
|
|
}
|
|
|
|
// ============================================================================
|
|
// Types and business logic below may be deprecated.
|
|
//
|
|
// TODO: Rename once legacy p2p types are removed.
|
|
// ref: https://github.com/tendermint/tendermint/issues/5670
|
|
// ============================================================================
|
|
|
|
//go:generate mockery --case underscore --name Peer
|
|
|
|
const metricsTickerDuration = 10 * time.Second
|
|
|
|
// Peer is an interface representing a peer connected on a reactor.
|
|
type Peer interface {
|
|
service.Service
|
|
FlushStop()
|
|
|
|
ID() NodeID // peer's cryptographic ID
|
|
RemoteIP() net.IP // remote IP of the connection
|
|
RemoteAddr() net.Addr // remote address of the connection
|
|
|
|
IsOutbound() bool // did we dial the peer
|
|
IsPersistent() bool // do we redial this peer when we disconnect
|
|
|
|
CloseConn() error // close original connection
|
|
|
|
NodeInfo() NodeInfo // peer's info
|
|
Status() tmconn.ConnectionStatus
|
|
SocketAddr() *NetAddress // actual address of the socket
|
|
|
|
Send(byte, []byte) bool
|
|
TrySend(byte, []byte) bool
|
|
|
|
Set(string, interface{})
|
|
Get(string) interface{}
|
|
}
|
|
|
|
//----------------------------------------------------------
|
|
|
|
// peerConn contains the raw connection and its config.
|
|
type peerConn struct {
|
|
outbound bool
|
|
persistent bool
|
|
conn Connection
|
|
ip net.IP // cached RemoteIP()
|
|
}
|
|
|
|
func newPeerConn(outbound, persistent bool, conn Connection) peerConn {
|
|
return peerConn{
|
|
outbound: outbound,
|
|
persistent: persistent,
|
|
conn: conn,
|
|
}
|
|
}
|
|
|
|
// ID only exists for SecretConnection.
|
|
func (pc peerConn) ID() NodeID {
|
|
return NodeIDFromPubKey(pc.conn.PubKey())
|
|
}
|
|
|
|
// Return the IP from the connection RemoteAddr
|
|
func (pc peerConn) RemoteIP() net.IP {
|
|
if pc.ip == nil {
|
|
pc.ip = pc.conn.RemoteEndpoint().IP
|
|
}
|
|
return pc.ip
|
|
}
|
|
|
|
// peer implements Peer.
|
|
//
|
|
// Before using a peer, you will need to perform a handshake on connection.
|
|
type peer struct {
|
|
service.BaseService
|
|
|
|
// raw peerConn and the multiplex connection
|
|
peerConn
|
|
|
|
// peer's node info and the channel it knows about
|
|
// channels = nodeInfo.Channels
|
|
// cached to avoid copying nodeInfo in hasChannel
|
|
nodeInfo NodeInfo
|
|
channels []byte
|
|
reactors map[byte]Reactor
|
|
onPeerError func(Peer, interface{})
|
|
|
|
// User data
|
|
Data *cmap.CMap
|
|
|
|
metrics *Metrics
|
|
metricsTicker *time.Ticker
|
|
}
|
|
|
|
type PeerOption func(*peer)
|
|
|
|
func newPeer(
|
|
pc peerConn,
|
|
reactorsByCh map[byte]Reactor,
|
|
onPeerError func(Peer, interface{}),
|
|
options ...PeerOption,
|
|
) *peer {
|
|
nodeInfo := pc.conn.NodeInfo()
|
|
p := &peer{
|
|
peerConn: pc,
|
|
nodeInfo: nodeInfo,
|
|
channels: nodeInfo.Channels, // TODO
|
|
reactors: reactorsByCh,
|
|
onPeerError: onPeerError,
|
|
Data: cmap.NewCMap(),
|
|
metricsTicker: time.NewTicker(metricsTickerDuration),
|
|
metrics: NopMetrics(),
|
|
}
|
|
|
|
p.BaseService = *service.NewBaseService(nil, "Peer", p)
|
|
for _, option := range options {
|
|
option(p)
|
|
}
|
|
|
|
return p
|
|
}
|
|
|
|
// onError calls the peer error callback.
|
|
func (p *peer) onError(err interface{}) {
|
|
p.onPeerError(p, err)
|
|
}
|
|
|
|
// String representation.
|
|
func (p *peer) String() string {
|
|
if p.outbound {
|
|
return fmt.Sprintf("Peer{%v %v out}", p.conn, p.ID())
|
|
}
|
|
|
|
return fmt.Sprintf("Peer{%v %v in}", p.conn, p.ID())
|
|
}
|
|
|
|
//---------------------------------------------------
|
|
// Implements service.Service
|
|
|
|
// SetLogger implements BaseService.
|
|
func (p *peer) SetLogger(l log.Logger) {
|
|
p.Logger = l
|
|
}
|
|
|
|
// OnStart implements BaseService.
|
|
func (p *peer) OnStart() error {
|
|
if err := p.BaseService.OnStart(); err != nil {
|
|
return err
|
|
}
|
|
|
|
go p.processMessages()
|
|
go p.metricsReporter()
|
|
|
|
return nil
|
|
}
|
|
|
|
// processMessages processes messages received from the connection.
|
|
func (p *peer) processMessages() {
|
|
defer func() {
|
|
if r := recover(); r != nil {
|
|
p.Logger.Error("peer message processing panic", "err", r, "stack", string(debug.Stack()))
|
|
p.onError(fmt.Errorf("panic during peer message processing: %v", r))
|
|
}
|
|
}()
|
|
|
|
for {
|
|
chID, msg, err := p.conn.ReceiveMessage()
|
|
if err != nil {
|
|
p.onError(err)
|
|
return
|
|
}
|
|
reactor, ok := p.reactors[chID]
|
|
if !ok {
|
|
p.onError(fmt.Errorf("unknown channel %v", chID))
|
|
return
|
|
}
|
|
reactor.Receive(chID, p, msg)
|
|
}
|
|
}
|
|
|
|
// FlushStop mimics OnStop but additionally ensures that all successful
|
|
// .Send() calls will get flushed before closing the connection.
|
|
// NOTE: it is not safe to call this method more than once.
|
|
func (p *peer) FlushStop() {
|
|
p.metricsTicker.Stop()
|
|
p.BaseService.OnStop()
|
|
if err := p.conn.FlushClose(); err != nil {
|
|
p.Logger.Debug("error while stopping peer", "err", err)
|
|
}
|
|
}
|
|
|
|
// OnStop implements BaseService.
|
|
func (p *peer) OnStop() {
|
|
p.metricsTicker.Stop()
|
|
p.BaseService.OnStop()
|
|
if err := p.conn.Close(); err != nil {
|
|
p.Logger.Debug("error while stopping peer", "err", err)
|
|
}
|
|
}
|
|
|
|
//---------------------------------------------------
|
|
// Implements Peer
|
|
|
|
// ID returns the peer's ID - the hex encoded hash of its pubkey.
|
|
func (p *peer) ID() NodeID {
|
|
return p.nodeInfo.ID()
|
|
}
|
|
|
|
// IsOutbound returns true if the connection is outbound, false otherwise.
|
|
func (p *peer) IsOutbound() bool {
|
|
return p.peerConn.outbound
|
|
}
|
|
|
|
// IsPersistent returns true if the peer is persitent, false otherwise.
|
|
func (p *peer) IsPersistent() bool {
|
|
return p.peerConn.persistent
|
|
}
|
|
|
|
// NodeInfo returns a copy of the peer's NodeInfo.
|
|
func (p *peer) NodeInfo() NodeInfo {
|
|
return p.nodeInfo
|
|
}
|
|
|
|
// SocketAddr returns the address of the socket.
|
|
// For outbound peers, it's the address dialed (after DNS resolution).
|
|
// For inbound peers, it's the address returned by the underlying connection
|
|
// (not what's reported in the peer's NodeInfo).
|
|
func (p *peer) SocketAddr() *NetAddress {
|
|
return p.peerConn.conn.RemoteEndpoint().NetAddress()
|
|
}
|
|
|
|
// Status returns the peer's ConnectionStatus.
|
|
func (p *peer) Status() tmconn.ConnectionStatus {
|
|
return p.conn.Status()
|
|
}
|
|
|
|
// Send msg bytes to the channel identified by chID byte. Returns false if the
|
|
// send queue is full after timeout, specified by MConnection.
|
|
func (p *peer) Send(chID byte, msgBytes []byte) bool {
|
|
if !p.IsRunning() {
|
|
// see Switch#Broadcast, where we fetch the list of peers and loop over
|
|
// them - while we're looping, one peer may be removed and stopped.
|
|
return false
|
|
} else if !p.hasChannel(chID) {
|
|
return false
|
|
}
|
|
res, err := p.conn.SendMessage(chID, msgBytes)
|
|
if err == io.EOF {
|
|
return false
|
|
} else if err != nil {
|
|
p.onError(err)
|
|
return false
|
|
}
|
|
if res {
|
|
labels := []string{
|
|
"peer_id", string(p.ID()),
|
|
"chID", fmt.Sprintf("%#x", chID),
|
|
}
|
|
p.metrics.PeerSendBytesTotal.With(labels...).Add(float64(len(msgBytes)))
|
|
}
|
|
return res
|
|
}
|
|
|
|
// TrySend msg bytes to the channel identified by chID byte. Immediately returns
|
|
// false if the send queue is full.
|
|
func (p *peer) TrySend(chID byte, msgBytes []byte) bool {
|
|
if !p.IsRunning() {
|
|
return false
|
|
} else if !p.hasChannel(chID) {
|
|
return false
|
|
}
|
|
res, err := p.conn.TrySendMessage(chID, msgBytes)
|
|
if err == io.EOF {
|
|
return false
|
|
} else if err != nil {
|
|
p.onError(err)
|
|
return false
|
|
}
|
|
if res {
|
|
labels := []string{
|
|
"peer_id", string(p.ID()),
|
|
"chID", fmt.Sprintf("%#x", chID),
|
|
}
|
|
p.metrics.PeerSendBytesTotal.With(labels...).Add(float64(len(msgBytes)))
|
|
}
|
|
return res
|
|
}
|
|
|
|
// Get the data for a given key.
|
|
func (p *peer) Get(key string) interface{} {
|
|
return p.Data.Get(key)
|
|
}
|
|
|
|
// Set sets the data for the given key.
|
|
func (p *peer) Set(key string, data interface{}) {
|
|
p.Data.Set(key, data)
|
|
}
|
|
|
|
// hasChannel returns true if the peer reported
|
|
// knowing about the given chID.
|
|
func (p *peer) hasChannel(chID byte) bool {
|
|
for _, ch := range p.channels {
|
|
if ch == chID {
|
|
return true
|
|
}
|
|
}
|
|
// NOTE: probably will want to remove this
|
|
// but could be helpful while the feature is new
|
|
p.Logger.Debug(
|
|
"Unknown channel for peer",
|
|
"channel",
|
|
chID,
|
|
"channels",
|
|
p.channels,
|
|
)
|
|
return false
|
|
}
|
|
|
|
// CloseConn closes original connection. Used for cleaning up in cases where the peer had not been started at all.
|
|
func (p *peer) CloseConn() error {
|
|
return p.peerConn.conn.Close()
|
|
}
|
|
|
|
//---------------------------------------------------
|
|
// methods only used for testing
|
|
// TODO: can we remove these?
|
|
|
|
// CloseConn closes the underlying connection
|
|
func (pc *peerConn) CloseConn() {
|
|
pc.conn.Close()
|
|
}
|
|
|
|
// RemoteAddr returns peer's remote network address.
|
|
func (p *peer) RemoteAddr() net.Addr {
|
|
endpoint := p.conn.RemoteEndpoint()
|
|
return &net.TCPAddr{
|
|
IP: endpoint.IP,
|
|
Port: int(endpoint.Port),
|
|
}
|
|
}
|
|
|
|
//---------------------------------------------------
|
|
|
|
func PeerMetrics(metrics *Metrics) PeerOption {
|
|
return func(p *peer) {
|
|
p.metrics = metrics
|
|
}
|
|
}
|
|
|
|
func (p *peer) metricsReporter() {
|
|
for {
|
|
select {
|
|
case <-p.metricsTicker.C:
|
|
status := p.conn.Status()
|
|
var sendQueueSize float64
|
|
for _, chStatus := range status.Channels {
|
|
sendQueueSize += float64(chStatus.SendQueueSize)
|
|
}
|
|
|
|
p.metrics.PeerPendingSendBytes.With("peer_id", string(p.ID())).Set(sendQueueSize)
|
|
case <-p.Quit():
|
|
return
|
|
}
|
|
}
|
|
}
|