|
package types
|
|
|
|
import (
|
|
"bytes"
|
|
"context"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"sort"
|
|
"strings"
|
|
"time"
|
|
|
|
abci "github.com/tendermint/tendermint/abci/types"
|
|
"github.com/tendermint/tendermint/crypto/merkle"
|
|
"github.com/tendermint/tendermint/crypto/tmhash"
|
|
tmjson "github.com/tendermint/tendermint/libs/json"
|
|
tmrand "github.com/tendermint/tendermint/libs/rand"
|
|
tmproto "github.com/tendermint/tendermint/proto/tendermint/types"
|
|
)
|
|
|
|
// Evidence represents any provable malicious activity by a validator.
|
|
// Verification logic for each evidence is part of the evidence module.
|
|
type Evidence interface {
|
|
ABCI() []abci.Evidence // forms individual evidence to be sent to the application
|
|
Bytes() []byte // bytes which comprise the evidence
|
|
Hash() []byte // hash of the evidence
|
|
Height() int64 // height of the infraction
|
|
String() string // string format of the evidence
|
|
Time() time.Time // time of the infraction
|
|
ValidateBasic() error // basic consistency check
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------
|
|
|
|
// DuplicateVoteEvidence contains evidence of a single validator signing two conflicting votes.
|
|
type DuplicateVoteEvidence struct {
|
|
VoteA *Vote `json:"vote_a"`
|
|
VoteB *Vote `json:"vote_b"`
|
|
|
|
// abci specific information
|
|
TotalVotingPower int64
|
|
ValidatorPower int64
|
|
Timestamp time.Time
|
|
}
|
|
|
|
var _ Evidence = &DuplicateVoteEvidence{}
|
|
|
|
// NewDuplicateVoteEvidence creates DuplicateVoteEvidence with right ordering given
|
|
// two conflicting votes. If one of the votes is nil, evidence returned is nil as well
|
|
func NewDuplicateVoteEvidence(vote1, vote2 *Vote, blockTime time.Time, valSet *ValidatorSet) *DuplicateVoteEvidence {
|
|
var voteA, voteB *Vote
|
|
if vote1 == nil || vote2 == nil || valSet == nil {
|
|
return nil
|
|
}
|
|
idx, val := valSet.GetByAddress(vote1.ValidatorAddress)
|
|
if idx == -1 {
|
|
return nil
|
|
}
|
|
|
|
if strings.Compare(vote1.BlockID.Key(), vote2.BlockID.Key()) == -1 {
|
|
voteA = vote1
|
|
voteB = vote2
|
|
} else {
|
|
voteA = vote2
|
|
voteB = vote1
|
|
}
|
|
return &DuplicateVoteEvidence{
|
|
VoteA: voteA,
|
|
VoteB: voteB,
|
|
TotalVotingPower: valSet.TotalVotingPower(),
|
|
ValidatorPower: val.VotingPower,
|
|
Timestamp: blockTime,
|
|
}
|
|
}
|
|
|
|
// ABCI returns the application relevant representation of the evidence
|
|
func (dve *DuplicateVoteEvidence) ABCI() []abci.Evidence {
|
|
return []abci.Evidence{{
|
|
Type: abci.EvidenceType_DUPLICATE_VOTE,
|
|
Validator: abci.Validator{
|
|
Address: dve.VoteA.ValidatorAddress,
|
|
Power: dve.ValidatorPower,
|
|
},
|
|
Height: dve.VoteA.Height,
|
|
Time: dve.Timestamp,
|
|
TotalVotingPower: dve.TotalVotingPower,
|
|
}}
|
|
}
|
|
|
|
// Bytes returns the proto-encoded evidence as a byte array.
|
|
func (dve *DuplicateVoteEvidence) Bytes() []byte {
|
|
pbe := dve.ToProto()
|
|
bz, err := pbe.Marshal()
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
return bz
|
|
}
|
|
|
|
// Hash returns the hash of the evidence.
|
|
func (dve *DuplicateVoteEvidence) Hash() []byte {
|
|
return tmhash.Sum(dve.Bytes())
|
|
}
|
|
|
|
// Height returns the height of the infraction
|
|
func (dve *DuplicateVoteEvidence) Height() int64 {
|
|
return dve.VoteA.Height
|
|
}
|
|
|
|
// String returns a string representation of the evidence.
|
|
func (dve *DuplicateVoteEvidence) String() string {
|
|
return fmt.Sprintf("DuplicateVoteEvidence{VoteA: %v, VoteB: %v}", dve.VoteA, dve.VoteB)
|
|
}
|
|
|
|
// Time returns the time of the infraction
|
|
func (dve *DuplicateVoteEvidence) Time() time.Time {
|
|
return dve.Timestamp
|
|
}
|
|
|
|
// ValidateBasic performs basic validation.
|
|
func (dve *DuplicateVoteEvidence) ValidateBasic() error {
|
|
if dve == nil {
|
|
return errors.New("empty duplicate vote evidence")
|
|
}
|
|
|
|
if dve.VoteA == nil || dve.VoteB == nil {
|
|
return fmt.Errorf("one or both of the votes are empty %v, %v", dve.VoteA, dve.VoteB)
|
|
}
|
|
if err := dve.VoteA.ValidateBasic(); err != nil {
|
|
return fmt.Errorf("invalid VoteA: %w", err)
|
|
}
|
|
if err := dve.VoteB.ValidateBasic(); err != nil {
|
|
return fmt.Errorf("invalid VoteB: %w", err)
|
|
}
|
|
// Enforce Votes are lexicographically sorted on blockID
|
|
if strings.Compare(dve.VoteA.BlockID.Key(), dve.VoteB.BlockID.Key()) >= 0 {
|
|
return errors.New("duplicate votes in invalid order")
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// ValidateABCI validates the ABCI component of the evidence by checking the
|
|
// timestamp, validator power and total voting power.
|
|
func (dve *DuplicateVoteEvidence) ValidateABCI(
|
|
val *Validator,
|
|
valSet *ValidatorSet,
|
|
evidenceTime time.Time,
|
|
) error {
|
|
|
|
if dve.Timestamp != evidenceTime {
|
|
return fmt.Errorf(
|
|
"evidence has a different time to the block it is associated with (%v != %v)",
|
|
dve.Timestamp, evidenceTime)
|
|
}
|
|
|
|
if val.VotingPower != dve.ValidatorPower {
|
|
return fmt.Errorf("validator power from evidence and our validator set does not match (%d != %d)",
|
|
dve.ValidatorPower, val.VotingPower)
|
|
}
|
|
if valSet.TotalVotingPower() != dve.TotalVotingPower {
|
|
return fmt.Errorf("total voting power from the evidence and our validator set does not match (%d != %d)",
|
|
dve.TotalVotingPower, valSet.TotalVotingPower())
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// GenerateABCI populates the ABCI component of the evidence. This includes the
|
|
// validator power, timestamp and total voting power.
|
|
func (dve *DuplicateVoteEvidence) GenerateABCI(
|
|
val *Validator,
|
|
valSet *ValidatorSet,
|
|
evidenceTime time.Time,
|
|
) {
|
|
dve.ValidatorPower = val.VotingPower
|
|
dve.TotalVotingPower = valSet.TotalVotingPower()
|
|
dve.Timestamp = evidenceTime
|
|
}
|
|
|
|
// ToProto encodes DuplicateVoteEvidence to protobuf
|
|
func (dve *DuplicateVoteEvidence) ToProto() *tmproto.DuplicateVoteEvidence {
|
|
voteB := dve.VoteB.ToProto()
|
|
voteA := dve.VoteA.ToProto()
|
|
tp := tmproto.DuplicateVoteEvidence{
|
|
VoteA: voteA,
|
|
VoteB: voteB,
|
|
TotalVotingPower: dve.TotalVotingPower,
|
|
ValidatorPower: dve.ValidatorPower,
|
|
Timestamp: dve.Timestamp,
|
|
}
|
|
return &tp
|
|
}
|
|
|
|
// DuplicateVoteEvidenceFromProto decodes protobuf into DuplicateVoteEvidence
|
|
func DuplicateVoteEvidenceFromProto(pb *tmproto.DuplicateVoteEvidence) (*DuplicateVoteEvidence, error) {
|
|
if pb == nil {
|
|
return nil, errors.New("nil duplicate vote evidence")
|
|
}
|
|
|
|
vA, err := VoteFromProto(pb.VoteA)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
vB, err := VoteFromProto(pb.VoteB)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
dve := &DuplicateVoteEvidence{
|
|
VoteA: vA,
|
|
VoteB: vB,
|
|
TotalVotingPower: pb.TotalVotingPower,
|
|
ValidatorPower: pb.ValidatorPower,
|
|
Timestamp: pb.Timestamp,
|
|
}
|
|
|
|
return dve, dve.ValidateBasic()
|
|
}
|
|
|
|
//------------------------------------ LIGHT EVIDENCE --------------------------------------
|
|
|
|
// LightClientAttackEvidence is a generalized evidence that captures all forms of known attacks on
|
|
// a light client such that a full node can verify, propose and commit the evidence on-chain for
|
|
// punishment of the malicious validators. There are three forms of attacks: Lunatic, Equivocation
|
|
// and Amnesia. These attacks are exhaustive. You can find a more detailed overview of this at
|
|
// tendermint/docs/architecture/adr-047-handling-evidence-from-light-client.md
|
|
//
|
|
// CommonHeight is used to indicate the type of attack. If the height is different to the conflicting block
|
|
// height, then nodes will treat this as of the Lunatic form, else it is of the Equivocation form.
|
|
type LightClientAttackEvidence struct {
|
|
ConflictingBlock *LightBlock
|
|
CommonHeight int64
|
|
|
|
// abci specific information
|
|
ByzantineValidators []*Validator // validators in the validator set that misbehaved in creating the conflicting block
|
|
TotalVotingPower int64 // total voting power of the validator set at the common height
|
|
Timestamp time.Time // timestamp of the block at the common height
|
|
}
|
|
|
|
var _ Evidence = &LightClientAttackEvidence{}
|
|
|
|
// ABCI forms an array of abci evidence for each byzantine validator
|
|
func (l *LightClientAttackEvidence) ABCI() []abci.Evidence {
|
|
abciEv := make([]abci.Evidence, len(l.ByzantineValidators))
|
|
for idx, val := range l.ByzantineValidators {
|
|
abciEv[idx] = abci.Evidence{
|
|
Type: abci.EvidenceType_LIGHT_CLIENT_ATTACK,
|
|
Validator: TM2PB.Validator(val),
|
|
Height: l.Height(),
|
|
Time: l.Timestamp,
|
|
TotalVotingPower: l.TotalVotingPower,
|
|
}
|
|
}
|
|
return abciEv
|
|
}
|
|
|
|
// Bytes returns the proto-encoded evidence as a byte array
|
|
func (l *LightClientAttackEvidence) Bytes() []byte {
|
|
pbe, err := l.ToProto()
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
bz, err := pbe.Marshal()
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return bz
|
|
}
|
|
|
|
// GetByzantineValidators finds out what style of attack LightClientAttackEvidence was and then works out who
|
|
// the malicious validators were and returns them. This is used both for forming the ByzantineValidators
|
|
// field and for validating that it is correct. Validators are ordered based on validator power
|
|
func (l *LightClientAttackEvidence) GetByzantineValidators(commonVals *ValidatorSet,
|
|
trusted *SignedHeader) []*Validator {
|
|
var validators []*Validator
|
|
// First check if the header is invalid. This means that it is a lunatic attack and therefore we take the
|
|
// validators who are in the commonVals and voted for the lunatic header
|
|
if l.ConflictingHeaderIsInvalid(trusted.Header) {
|
|
for _, commitSig := range l.ConflictingBlock.Commit.Signatures {
|
|
if !commitSig.ForBlock() {
|
|
continue
|
|
}
|
|
|
|
_, val := commonVals.GetByAddress(commitSig.ValidatorAddress)
|
|
if val == nil {
|
|
// validator wasn't in the common validator set
|
|
continue
|
|
}
|
|
validators = append(validators, val)
|
|
}
|
|
sort.Sort(ValidatorsByVotingPower(validators))
|
|
return validators
|
|
} else if trusted.Commit.Round == l.ConflictingBlock.Commit.Round {
|
|
// This is an equivocation attack as both commits are in the same round. We then find the validators
|
|
// from the conflicting light block validator set that voted in both headers.
|
|
// Validator hashes are the same therefore the indexing order of validators are the same and thus we
|
|
// only need a single loop to find the validators that voted twice.
|
|
for i := 0; i < len(l.ConflictingBlock.Commit.Signatures); i++ {
|
|
sigA := l.ConflictingBlock.Commit.Signatures[i]
|
|
if !sigA.ForBlock() {
|
|
continue
|
|
}
|
|
|
|
sigB := trusted.Commit.Signatures[i]
|
|
if !sigB.ForBlock() {
|
|
continue
|
|
}
|
|
|
|
_, val := l.ConflictingBlock.ValidatorSet.GetByAddress(sigA.ValidatorAddress)
|
|
validators = append(validators, val)
|
|
}
|
|
sort.Sort(ValidatorsByVotingPower(validators))
|
|
return validators
|
|
}
|
|
// if the rounds are different then this is an amnesia attack. Unfortunately, given the nature of the attack,
|
|
// we aren't able yet to deduce which are malicious validators and which are not hence we return an
|
|
// empty validator set.
|
|
return validators
|
|
}
|
|
|
|
// ConflictingHeaderIsInvalid takes a trusted header and matches it againt a conflicting header
|
|
// to determine whether the conflicting header was the product of a valid state transition
|
|
// or not. If it is then all the deterministic fields of the header should be the same.
|
|
// If not, it is an invalid header and constitutes a lunatic attack.
|
|
func (l *LightClientAttackEvidence) ConflictingHeaderIsInvalid(trustedHeader *Header) bool {
|
|
return !bytes.Equal(trustedHeader.ValidatorsHash, l.ConflictingBlock.ValidatorsHash) ||
|
|
!bytes.Equal(trustedHeader.NextValidatorsHash, l.ConflictingBlock.NextValidatorsHash) ||
|
|
!bytes.Equal(trustedHeader.ConsensusHash, l.ConflictingBlock.ConsensusHash) ||
|
|
!bytes.Equal(trustedHeader.AppHash, l.ConflictingBlock.AppHash) ||
|
|
!bytes.Equal(trustedHeader.LastResultsHash, l.ConflictingBlock.LastResultsHash)
|
|
|
|
}
|
|
|
|
// Hash returns the hash of the header and the commonHeight. This is designed to cause hash collisions
|
|
// with evidence that have the same conflicting header and common height but different permutations
|
|
// of validator commit signatures. The reason for this is that we don't want to allow several
|
|
// permutations of the same evidence to be committed on chain. Ideally we commit the header with the
|
|
// most commit signatures (captures the most byzantine validators) but anything greater than 1/3 is
|
|
// sufficient.
|
|
// TODO: We should change the hash to include the commit, header, total voting power, byzantine
|
|
// validators and timestamp
|
|
func (l *LightClientAttackEvidence) Hash() []byte {
|
|
buf := make([]byte, binary.MaxVarintLen64)
|
|
n := binary.PutVarint(buf, l.CommonHeight)
|
|
bz := make([]byte, tmhash.Size+n)
|
|
copy(bz[:tmhash.Size-1], l.ConflictingBlock.Hash().Bytes())
|
|
copy(bz[tmhash.Size:], buf)
|
|
return tmhash.Sum(bz)
|
|
}
|
|
|
|
// Height returns the last height at which the primary provider and witness provider had the same header.
|
|
// We use this as the height of the infraction rather than the actual conflicting header because we know
|
|
// that the malicious validators were bonded at this height which is important for evidence expiry
|
|
func (l *LightClientAttackEvidence) Height() int64 {
|
|
return l.CommonHeight
|
|
}
|
|
|
|
// String returns a string representation of LightClientAttackEvidence
|
|
func (l *LightClientAttackEvidence) String() string {
|
|
return fmt.Sprintf(`LightClientAttackEvidence{
|
|
ConflictingBlock: %v,
|
|
CommonHeight: %d,
|
|
ByzatineValidators: %v,
|
|
TotalVotingPower: %d,
|
|
Timestamp: %v}#%X`,
|
|
l.ConflictingBlock.String(), l.CommonHeight, l.ByzantineValidators,
|
|
l.TotalVotingPower, l.Timestamp, l.Hash())
|
|
}
|
|
|
|
// Time returns the time of the common block where the infraction leveraged off.
|
|
func (l *LightClientAttackEvidence) Time() time.Time {
|
|
return l.Timestamp
|
|
}
|
|
|
|
// ValidateBasic performs basic validation such that the evidence is consistent and can now be used for verification.
|
|
func (l *LightClientAttackEvidence) ValidateBasic() error {
|
|
if l.ConflictingBlock == nil {
|
|
return errors.New("conflicting block is nil")
|
|
}
|
|
|
|
// this check needs to be done before we can run validate basic
|
|
if l.ConflictingBlock.Header == nil {
|
|
return errors.New("conflicting block missing header")
|
|
}
|
|
|
|
if l.TotalVotingPower <= 0 {
|
|
return errors.New("negative or zero total voting power")
|
|
}
|
|
|
|
if l.CommonHeight <= 0 {
|
|
return errors.New("negative or zero common height")
|
|
}
|
|
|
|
// check that common height isn't ahead of the height of the conflicting block. It
|
|
// is possible that they are the same height if the light node witnesses either an
|
|
// amnesia or a equivocation attack.
|
|
if l.CommonHeight > l.ConflictingBlock.Height {
|
|
return fmt.Errorf("common height is ahead of the conflicting block height (%d > %d)",
|
|
l.CommonHeight, l.ConflictingBlock.Height)
|
|
}
|
|
|
|
if err := l.ConflictingBlock.ValidateBasic(l.ConflictingBlock.ChainID); err != nil {
|
|
return fmt.Errorf("invalid conflicting light block: %w", err)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// ValidateABCI validates the ABCI component of the evidence by checking the
|
|
// timestamp, byzantine validators and total voting power all match. ABCI
|
|
// components are validated separately because they can be re generated if
|
|
// invalid.
|
|
func (l *LightClientAttackEvidence) ValidateABCI(
|
|
commonVals *ValidatorSet,
|
|
trustedHeader *SignedHeader,
|
|
evidenceTime time.Time,
|
|
) error {
|
|
|
|
if evTotal, valsTotal := l.TotalVotingPower, commonVals.TotalVotingPower(); evTotal != valsTotal {
|
|
return fmt.Errorf("total voting power from the evidence and our validator set does not match (%d != %d)",
|
|
evTotal, valsTotal)
|
|
}
|
|
|
|
if l.Timestamp != evidenceTime {
|
|
return fmt.Errorf(
|
|
"evidence has a different time to the block it is associated with (%v != %v)",
|
|
l.Timestamp, evidenceTime)
|
|
}
|
|
|
|
// Find out what type of attack this was and thus extract the malicious
|
|
// validators. Note, in the case of an Amnesia attack we don't have any
|
|
// malicious validators.
|
|
validators := l.GetByzantineValidators(commonVals, trustedHeader)
|
|
|
|
// Ensure this matches the validators that are listed in the evidence. They
|
|
// should be ordered based on power.
|
|
if validators == nil && l.ByzantineValidators != nil {
|
|
return fmt.Errorf(
|
|
"expected nil validators from an amnesia light client attack but got %d",
|
|
len(l.ByzantineValidators),
|
|
)
|
|
}
|
|
|
|
if exp, got := len(validators), len(l.ByzantineValidators); exp != got {
|
|
return fmt.Errorf("expected %d byzantine validators from evidence but got %d", exp, got)
|
|
}
|
|
|
|
for idx, val := range validators {
|
|
if !bytes.Equal(l.ByzantineValidators[idx].Address, val.Address) {
|
|
return fmt.Errorf(
|
|
"evidence contained an unexpected byzantine validator address; expected: %v, got: %v",
|
|
val.Address, l.ByzantineValidators[idx].Address,
|
|
)
|
|
}
|
|
|
|
if l.ByzantineValidators[idx].VotingPower != val.VotingPower {
|
|
return fmt.Errorf(
|
|
"evidence contained unexpected byzantine validator power; expected %d, got %d",
|
|
val.VotingPower, l.ByzantineValidators[idx].VotingPower,
|
|
)
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// GenerateABCI populates the ABCI component of the evidence: the timestamp,
|
|
// total voting power and byantine validators
|
|
func (l *LightClientAttackEvidence) GenerateABCI(
|
|
commonVals *ValidatorSet,
|
|
trustedHeader *SignedHeader,
|
|
evidenceTime time.Time,
|
|
) {
|
|
l.Timestamp = evidenceTime
|
|
l.TotalVotingPower = commonVals.TotalVotingPower()
|
|
l.ByzantineValidators = l.GetByzantineValidators(commonVals, trustedHeader)
|
|
}
|
|
|
|
// ToProto encodes LightClientAttackEvidence to protobuf
|
|
func (l *LightClientAttackEvidence) ToProto() (*tmproto.LightClientAttackEvidence, error) {
|
|
conflictingBlock, err := l.ConflictingBlock.ToProto()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
byzVals := make([]*tmproto.Validator, len(l.ByzantineValidators))
|
|
for idx, val := range l.ByzantineValidators {
|
|
valpb, err := val.ToProto()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
byzVals[idx] = valpb
|
|
}
|
|
|
|
return &tmproto.LightClientAttackEvidence{
|
|
ConflictingBlock: conflictingBlock,
|
|
CommonHeight: l.CommonHeight,
|
|
ByzantineValidators: byzVals,
|
|
TotalVotingPower: l.TotalVotingPower,
|
|
Timestamp: l.Timestamp,
|
|
}, nil
|
|
}
|
|
|
|
// LightClientAttackEvidenceFromProto decodes protobuf
|
|
func LightClientAttackEvidenceFromProto(lpb *tmproto.LightClientAttackEvidence) (*LightClientAttackEvidence, error) {
|
|
if lpb == nil {
|
|
return nil, errors.New("empty light client attack evidence")
|
|
}
|
|
|
|
conflictingBlock, err := LightBlockFromProto(lpb.ConflictingBlock)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
byzVals := make([]*Validator, len(lpb.ByzantineValidators))
|
|
for idx, valpb := range lpb.ByzantineValidators {
|
|
val, err := ValidatorFromProto(valpb)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
byzVals[idx] = val
|
|
}
|
|
|
|
l := &LightClientAttackEvidence{
|
|
ConflictingBlock: conflictingBlock,
|
|
CommonHeight: lpb.CommonHeight,
|
|
ByzantineValidators: byzVals,
|
|
TotalVotingPower: lpb.TotalVotingPower,
|
|
Timestamp: lpb.Timestamp,
|
|
}
|
|
|
|
return l, l.ValidateBasic()
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------
|
|
|
|
// EvidenceList is a list of Evidence. Evidences is not a word.
|
|
type EvidenceList []Evidence
|
|
|
|
// Hash returns the simple merkle root hash of the EvidenceList.
|
|
func (evl EvidenceList) Hash() []byte {
|
|
// These allocations are required because Evidence is not of type Bytes, and
|
|
// golang slices can't be typed cast. This shouldn't be a performance problem since
|
|
// the Evidence size is capped.
|
|
evidenceBzs := make([][]byte, len(evl))
|
|
for i := 0; i < len(evl); i++ {
|
|
// TODO: We should change this to the hash. Using bytes contains some unexported data that
|
|
// may cause different hashes
|
|
evidenceBzs[i] = evl[i].Bytes()
|
|
}
|
|
return merkle.HashFromByteSlices(evidenceBzs)
|
|
}
|
|
|
|
func (evl EvidenceList) String() string {
|
|
s := ""
|
|
for _, e := range evl {
|
|
s += fmt.Sprintf("%s\t\t", e)
|
|
}
|
|
return s
|
|
}
|
|
|
|
// Has returns true if the evidence is in the EvidenceList.
|
|
func (evl EvidenceList) Has(evidence Evidence) bool {
|
|
for _, ev := range evl {
|
|
if bytes.Equal(evidence.Hash(), ev.Hash()) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
//------------------------------------------ PROTO --------------------------------------
|
|
|
|
// EvidenceToProto is a generalized function for encoding evidence that conforms to the
|
|
// evidence interface to protobuf
|
|
func EvidenceToProto(evidence Evidence) (*tmproto.Evidence, error) {
|
|
if evidence == nil {
|
|
return nil, errors.New("nil evidence")
|
|
}
|
|
|
|
switch evi := evidence.(type) {
|
|
case *DuplicateVoteEvidence:
|
|
pbev := evi.ToProto()
|
|
return &tmproto.Evidence{
|
|
Sum: &tmproto.Evidence_DuplicateVoteEvidence{
|
|
DuplicateVoteEvidence: pbev,
|
|
},
|
|
}, nil
|
|
|
|
case *LightClientAttackEvidence:
|
|
pbev, err := evi.ToProto()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return &tmproto.Evidence{
|
|
Sum: &tmproto.Evidence_LightClientAttackEvidence{
|
|
LightClientAttackEvidence: pbev,
|
|
},
|
|
}, nil
|
|
|
|
default:
|
|
return nil, fmt.Errorf("toproto: evidence is not recognized: %T", evi)
|
|
}
|
|
}
|
|
|
|
// EvidenceFromProto is a generalized function for decoding protobuf into the
|
|
// evidence interface
|
|
func EvidenceFromProto(evidence *tmproto.Evidence) (Evidence, error) {
|
|
if evidence == nil {
|
|
return nil, errors.New("nil evidence")
|
|
}
|
|
|
|
switch evi := evidence.Sum.(type) {
|
|
case *tmproto.Evidence_DuplicateVoteEvidence:
|
|
return DuplicateVoteEvidenceFromProto(evi.DuplicateVoteEvidence)
|
|
case *tmproto.Evidence_LightClientAttackEvidence:
|
|
return LightClientAttackEvidenceFromProto(evi.LightClientAttackEvidence)
|
|
default:
|
|
return nil, errors.New("evidence is not recognized")
|
|
}
|
|
}
|
|
|
|
func init() {
|
|
tmjson.RegisterType(&DuplicateVoteEvidence{}, "tendermint/DuplicateVoteEvidence")
|
|
tmjson.RegisterType(&LightClientAttackEvidence{}, "tendermint/LightClientAttackEvidence")
|
|
}
|
|
|
|
//-------------------------------------------- ERRORS --------------------------------------
|
|
|
|
// ErrInvalidEvidence wraps a piece of evidence and the error denoting how or why it is invalid.
|
|
type ErrInvalidEvidence struct {
|
|
Evidence Evidence
|
|
Reason error
|
|
}
|
|
|
|
// NewErrInvalidEvidence returns a new EvidenceInvalid with the given err.
|
|
func NewErrInvalidEvidence(ev Evidence, err error) *ErrInvalidEvidence {
|
|
return &ErrInvalidEvidence{ev, err}
|
|
}
|
|
|
|
// Error returns a string representation of the error.
|
|
func (err *ErrInvalidEvidence) Error() string {
|
|
return fmt.Sprintf("Invalid evidence: %v. Evidence: %v", err.Reason, err.Evidence)
|
|
}
|
|
|
|
// ErrEvidenceOverflow is for when there the amount of evidence exceeds the max bytes.
|
|
type ErrEvidenceOverflow struct {
|
|
Max int64
|
|
Got int64
|
|
}
|
|
|
|
// NewErrEvidenceOverflow returns a new ErrEvidenceOverflow where got > max.
|
|
func NewErrEvidenceOverflow(max, got int64) *ErrEvidenceOverflow {
|
|
return &ErrEvidenceOverflow{max, got}
|
|
}
|
|
|
|
// Error returns a string representation of the error.
|
|
func (err *ErrEvidenceOverflow) Error() string {
|
|
return fmt.Sprintf("Too much evidence: Max %d, got %d", err.Max, err.Got)
|
|
}
|
|
|
|
//-------------------------------------------- MOCKING --------------------------------------
|
|
|
|
// unstable - use only for testing
|
|
|
|
// assumes the round to be 0 and the validator index to be 0
|
|
func NewMockDuplicateVoteEvidence(height int64, time time.Time, chainID string) *DuplicateVoteEvidence {
|
|
val := NewMockPV()
|
|
return NewMockDuplicateVoteEvidenceWithValidator(height, time, val, chainID)
|
|
}
|
|
|
|
// assumes voting power to be 10 and validator to be the only one in the set
|
|
func NewMockDuplicateVoteEvidenceWithValidator(height int64, time time.Time,
|
|
pv PrivValidator, chainID string) *DuplicateVoteEvidence {
|
|
pubKey, _ := pv.GetPubKey(context.Background())
|
|
val := NewValidator(pubKey, 10)
|
|
voteA := makeMockVote(height, 0, 0, pubKey.Address(), randBlockID(), time)
|
|
vA := voteA.ToProto()
|
|
_ = pv.SignVote(context.Background(), chainID, vA)
|
|
voteA.Signature = vA.Signature
|
|
voteB := makeMockVote(height, 0, 0, pubKey.Address(), randBlockID(), time)
|
|
vB := voteB.ToProto()
|
|
_ = pv.SignVote(context.Background(), chainID, vB)
|
|
voteB.Signature = vB.Signature
|
|
return NewDuplicateVoteEvidence(voteA, voteB, time, NewValidatorSet([]*Validator{val}))
|
|
}
|
|
|
|
func makeMockVote(height int64, round, index int32, addr Address,
|
|
blockID BlockID, time time.Time) *Vote {
|
|
return &Vote{
|
|
Type: tmproto.SignedMsgType(2),
|
|
Height: height,
|
|
Round: round,
|
|
BlockID: blockID,
|
|
Timestamp: time,
|
|
ValidatorAddress: addr,
|
|
ValidatorIndex: index,
|
|
}
|
|
}
|
|
|
|
func randBlockID() BlockID {
|
|
return BlockID{
|
|
Hash: tmrand.Bytes(tmhash.Size),
|
|
PartSetHeader: PartSetHeader{
|
|
Total: 1,
|
|
Hash: tmrand.Bytes(tmhash.Size),
|
|
},
|
|
}
|
|
}
|