You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

238 lines
6.9 KiB

package secp256k1
import (
"bytes"
"crypto/sha256"
"crypto/subtle"
"fmt"
"io"
"math/big"
secp256k1 "github.com/btcsuite/btcd/btcec"
"github.com/tendermint/tendermint/crypto"
tmjson "github.com/tendermint/tendermint/libs/json"
// necessary for Bitcoin address format
"golang.org/x/crypto/ripemd160" // nolint
)
//-------------------------------------
const (
PrivKeyName = "tendermint/PrivKeySecp256k1"
PubKeyName = "tendermint/PubKeySecp256k1"
KeyType = "secp256k1"
PrivKeySize = 32
)
func init() {
tmjson.RegisterType(PubKey{}, PubKeyName)
tmjson.RegisterType(PrivKey{}, PrivKeyName)
}
var _ crypto.PrivKey = PrivKey{}
// PrivKey implements PrivKey.
type PrivKey []byte
// Bytes marshalls the private key using amino encoding.
func (privKey PrivKey) Bytes() []byte {
return []byte(privKey)
}
// PubKey performs the point-scalar multiplication from the privKey on the
// generator point to get the pubkey.
func (privKey PrivKey) PubKey() crypto.PubKey {
_, pubkeyObject := secp256k1.PrivKeyFromBytes(secp256k1.S256(), privKey)
pk := pubkeyObject.SerializeCompressed()
return PubKey(pk)
}
// Equals - you probably don't need to use this.
// Runs in constant time based on length of the keys.
func (privKey PrivKey) Equals(other crypto.PrivKey) bool {
if otherSecp, ok := other.(PrivKey); ok {
return subtle.ConstantTimeCompare(privKey[:], otherSecp[:]) == 1
}
return false
}
func (privKey PrivKey) Type() string {
return KeyType
}
// GenPrivKey generates a new ECDSA private key on curve secp256k1 private key.
// It uses OS randomness to generate the private key.
func GenPrivKey() PrivKey {
return genPrivKey(crypto.CReader())
}
// genPrivKey generates a new secp256k1 private key using the provided reader.
func genPrivKey(rand io.Reader) PrivKey {
var privKeyBytes [PrivKeySize]byte
d := new(big.Int)
for {
privKeyBytes = [PrivKeySize]byte{}
_, err := io.ReadFull(rand, privKeyBytes[:])
if err != nil {
panic(err)
}
d.SetBytes(privKeyBytes[:])
// break if we found a valid point (i.e. > 0 and < N == curverOrder)
isValidFieldElement := 0 < d.Sign() && d.Cmp(secp256k1.S256().N) < 0
if isValidFieldElement {
break
}
}
return PrivKey(privKeyBytes[:])
}
var one = new(big.Int).SetInt64(1)
// GenPrivKeySecp256k1 hashes the secret with SHA2, and uses
// that 32 byte output to create the private key.
//
// It makes sure the private key is a valid field element by setting:
//
// c = sha256(secret)
// k = (c mod (n − 1)) + 1, where n = curve order.
//
// NOTE: secret should be the output of a KDF like bcrypt,
// if it's derived from user input.
func GenPrivKeySecp256k1(secret []byte) PrivKey {
secHash := sha256.Sum256(secret)
// to guarantee that we have a valid field element, we use the approach of:
// "Suite B Implementer’s Guide to FIPS 186-3", A.2.1
// https://apps.nsa.gov/iaarchive/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/suite-b-implementers-guide-to-fips-186-3-ecdsa.cfm
// see also https://github.com/golang/go/blob/0380c9ad38843d523d9c9804fe300cb7edd7cd3c/src/crypto/ecdsa/ecdsa.go#L89-L101
fe := new(big.Int).SetBytes(secHash[:])
n := new(big.Int).Sub(secp256k1.S256().N, one)
fe.Mod(fe, n)
fe.Add(fe, one)
feB := fe.Bytes()
privKey32 := make([]byte, PrivKeySize)
// copy feB over to fixed 32 byte privKey32 and pad (if necessary)
copy(privKey32[32-len(feB):32], feB)
return PrivKey(privKey32)
}
//-------------------------------------
var _ crypto.PubKey = PubKey{}
// PubKeySize is comprised of 32 bytes for one field element
// (the x-coordinate), plus one byte for the parity of the y-coordinate.
const PubKeySize = 33
// PubKey implements crypto.PubKey.
// It is the compressed form of the pubkey. The first byte depends is a 0x02 byte
// if the y-coordinate is the lexicographically largest of the two associated with
// the x-coordinate. Otherwise the first byte is a 0x03.
// This prefix is followed with the x-coordinate.
type PubKey []byte
// Address returns a Bitcoin style addresses: RIPEMD160(SHA256(pubkey))
func (pubKey PubKey) Address() crypto.Address {
if len(pubKey) != PubKeySize {
panic("length of pubkey is incorrect")
}
hasherSHA256 := sha256.New()
_, _ = hasherSHA256.Write(pubKey) // does not error
sha := hasherSHA256.Sum(nil)
hasherRIPEMD160 := ripemd160.New()
_, _ = hasherRIPEMD160.Write(sha) // does not error
return crypto.Address(hasherRIPEMD160.Sum(nil))
}
// Bytes returns the pubkey marshaled with amino encoding.
func (pubKey PubKey) Bytes() []byte {
return []byte(pubKey)
}
func (pubKey PubKey) String() string {
return fmt.Sprintf("PubKeySecp256k1{%X}", []byte(pubKey))
}
func (pubKey PubKey) Equals(other crypto.PubKey) bool {
if otherSecp, ok := other.(PubKey); ok {
return bytes.Equal(pubKey[:], otherSecp[:])
}
return false
}
func (pubKey PubKey) Type() string {
return KeyType
}
// used to reject malleable signatures
// see:
// - https://github.com/ethereum/go-ethereum/blob/f9401ae011ddf7f8d2d95020b7446c17f8d98dc1/crypto/signature_nocgo.go#L90-L93
// - https://github.com/ethereum/go-ethereum/blob/f9401ae011ddf7f8d2d95020b7446c17f8d98dc1/crypto/crypto.go#L39
var secp256k1halfN = new(big.Int).Rsh(secp256k1.S256().N, 1)
// Sign creates an ECDSA signature on curve Secp256k1, using SHA256 on the msg.
// The returned signature will be of the form R || S (in lower-S form).
func (privKey PrivKey) Sign(msg []byte) ([]byte, error) {
priv, _ := secp256k1.PrivKeyFromBytes(secp256k1.S256(), privKey)
sig, err := priv.Sign(crypto.Sha256(msg))
if err != nil {
return nil, err
}
sigBytes := serializeSig(sig)
return sigBytes, nil
}
// VerifySignature verifies a signature of the form R || S.
// It rejects signatures which are not in lower-S form.
func (pubKey PubKey) VerifySignature(msg []byte, sigStr []byte) bool {
if len(sigStr) != 64 {
return false
}
pub, err := secp256k1.ParsePubKey(pubKey, secp256k1.S256())
if err != nil {
return false
}
// parse the signature:
signature := signatureFromBytes(sigStr)
// Reject malleable signatures. libsecp256k1 does this check but btcec doesn't.
// see: https://github.com/ethereum/go-ethereum/blob/f9401ae011ddf7f8d2d95020b7446c17f8d98dc1/crypto/signature_nocgo.go#L90-L93
if signature.S.Cmp(secp256k1halfN) > 0 {
return false
}
return signature.Verify(crypto.Sha256(msg), pub)
}
// Read Signature struct from R || S. Caller needs to ensure
// that len(sigStr) == 64.
func signatureFromBytes(sigStr []byte) *secp256k1.Signature {
return &secp256k1.Signature{
R: new(big.Int).SetBytes(sigStr[:32]),
S: new(big.Int).SetBytes(sigStr[32:64]),
}
}
// Serialize signature to R || S.
// R, S are padded to 32 bytes respectively.
func serializeSig(sig *secp256k1.Signature) []byte {
rBytes := sig.R.Bytes()
sBytes := sig.S.Bytes()
sigBytes := make([]byte, 64)
// 0 pad the byte arrays from the left if they aren't big enough.
copy(sigBytes[32-len(rBytes):32], rBytes)
copy(sigBytes[64-len(sBytes):64], sBytes)
return sigBytes
}