You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

262 lines
9.1 KiB

package e2e
import (
"fmt"
"os"
"sort"
"github.com/BurntSushi/toml"
)
// Manifest represents a TOML testnet manifest.
type Manifest struct {
// IPv6 uses IPv6 networking instead of IPv4. Defaults to IPv4.
IPv6 bool `toml:"ipv6"`
// InitialHeight specifies the initial block height, set in genesis. Defaults to 1.
InitialHeight int64 `toml:"initial_height"`
// InitialState is an initial set of key/value pairs for the application,
// set in genesis. Defaults to nothing.
InitialState map[string]string `toml:"initial_state"`
// Validators is the initial validator set in genesis, given as node names
// and power:
//
// validators = { validator01 = 10; validator02 = 20; validator03 = 30 }
//
// Defaults to all nodes that have mode=validator at power 100. Explicitly
// specifying an empty set will start with no validators in genesis, and
// the application must return the validator set in InitChain via the
// setting validator_update.0 (see below).
Validators *map[string]int64 `toml:"validators"`
// ValidatorUpdates is a map of heights to validator names and their power,
// and will be returned by the ABCI application. For example, the following
// changes the power of validator01 and validator02 at height 1000:
//
// [validator_update.1000]
// validator01 = 20
// validator02 = 10
//
// Specifying height 0 returns the validator update during InitChain. The
// application returns the validator updates as-is, i.e. removing a
// validator must be done by returning it with power 0, and any validators
// not specified are not changed.
ValidatorUpdates map[string]map[string]int64 `toml:"validator_update"`
// Nodes specifies the network nodes. At least one node must be given.
Nodes map[string]*ManifestNode `toml:"node"`
// KeyType sets the curve that will be used by validators.
// Options are ed25519 & secp256k1
KeyType string `toml:"key_type"`
// Evidence indicates the amount of evidence that will be injected into the
// testnet via the RPC endpoint of a random node. Default is 0
Evidence int `toml:"evidence"`
// LogLevel sets the log level of the entire testnet. This can be overridden
// by individual nodes.
LogLevel string `toml:"log_level"`
// QueueType describes the type of queue that the system uses internally
QueueType string `toml:"queue_type"`
// Number of bytes per tx. Default is 1kb (1024)
TxSize int64
}
// ManifestNode represents a node in a testnet manifest.
type ManifestNode struct {
// Mode specifies the type of node: "validator", "full", "light" or "seed".
// Defaults to "validator". Full nodes do not get a signing key (a dummy key
// is generated), and seed nodes run in seed mode with the PEX reactor enabled.
Mode string `toml:"mode"`
// Seeds is the list of node names to use as P2P seed nodes. Defaults to none.
Seeds []string `toml:"seeds"`
// PersistentPeers is a list of node names to maintain persistent P2P
// connections to. If neither seeds nor persistent peers are specified,
// this defaults to all other nodes in the network. For light clients,
// this relates to the providers the light client is connected to.
PersistentPeers []string `toml:"persistent_peers"`
// Database specifies the database backend: "goleveldb", "cleveldb",
// "rocksdb", "boltdb", or "badgerdb". Defaults to goleveldb.
Database string `toml:"database"`
// ABCIProtocol specifies the protocol used to communicate with the ABCI
// application: "unix", "tcp", "grpc", or "builtin". Defaults to unix.
// builtin will build a complete Tendermint node into the application and
// launch it instead of launching a separate Tendermint process.
ABCIProtocol string `toml:"abci_protocol"`
// PrivvalProtocol specifies the protocol used to sign consensus messages:
// "file", "unix", "tcp", or "grpc". Defaults to "file". For tcp and unix, the ABCI
// application will launch a remote signer client in a separate goroutine.
// For grpc the ABCI application will launch a remote signer server.
// Only nodes with mode=validator will actually make use of this.
PrivvalProtocol string `toml:"privval_protocol"`
// StartAt specifies the block height at which the node will be started. The
// runner will wait for the network to reach at least this block height.
StartAt int64 `toml:"start_at"`
// BlockSync specifies the block sync mode: "" (disable), "v0" or "v2".
// Defaults to disabled.
BlockSync string `toml:"block_sync"`
// Mempool specifies which version of mempool to use. Either "v0" or "v1"
Mempool string `toml:"mempool_version"`
// StateSync enables state sync. The runner automatically configures trusted
// block hashes and RPC servers. At least one node in the network must have
// SnapshotInterval set to non-zero, and the state syncing node must have
// StartAt set to an appropriate height where a snapshot is available.
// StateSync can either be "p2p" or "rpc" or an empty string to disable
StateSync string `toml:"state_sync"`
// PersistInterval specifies the height interval at which the application
// will persist state to disk. Defaults to 1 (every height), setting this to
// 0 disables state persistence.
PersistInterval *uint64 `toml:"persist_interval"`
// SnapshotInterval specifies the height interval at which the application
// will take state sync snapshots. Defaults to 0 (disabled).
SnapshotInterval uint64 `toml:"snapshot_interval"`
// RetainBlocks specifies the number of recent blocks to retain. Defaults to
// 0, which retains all blocks. Must be greater that PersistInterval,
// SnapshotInterval and EvidenceAgeHeight.
RetainBlocks uint64 `toml:"retain_blocks"`
// Perturb lists perturbations to apply to the node after it has been
// started and synced with the network:
//
// disconnect: temporarily disconnects the node from the network
// kill: kills the node with SIGKILL then restarts it
// pause: temporarily pauses (freezes) the node
// restart: restarts the node, shutting it down with SIGTERM
Perturb []string `toml:"perturb"`
// Log level sets the log level of the specific node i.e. "info".
// This is helpful when debugging a specific problem. This overrides the network
// level.
LogLevel string `toml:"log_level"`
}
// Stateless reports whether m is a node that does not own state, including light and seed nodes.
func (m ManifestNode) Stateless() bool {
return m.Mode == string(ModeLight) || m.Mode == string(ModeSeed)
}
// Save saves the testnet manifest to a file.
func (m Manifest) Save(file string) error {
f, err := os.Create(file)
if err != nil {
return fmt.Errorf("failed to create manifest file %q: %w", file, err)
}
return toml.NewEncoder(f).Encode(m)
}
// LoadManifest loads a testnet manifest from a file.
func LoadManifest(file string) (Manifest, error) {
manifest := Manifest{}
_, err := toml.DecodeFile(file, &manifest)
if err != nil {
return manifest, fmt.Errorf("failed to load testnet manifest %q: %w", file, err)
}
return manifest, nil
}
// SortManifests orders (in-place) a list of manifests such that the
// manifests will be ordered in terms of complexity (or expected
// runtime). Complexity is determined first by the number of nodes,
// and then by the total number of perturbations in the network.
//
// If reverse is true, then the manifests are ordered with the most
// complex networks before the less complex networks.
func SortManifests(manifests []Manifest, reverse bool) {
sort.SliceStable(manifests, func(i, j int) bool {
// sort based on a point-based comparison between two
// manifests.
var (
left = manifests[i]
right = manifests[j]
)
// scores start with 100 points for each node. The
// number of nodes in a network is the most important
// factor in the complexity of the test.
leftScore := len(left.Nodes) * 100
rightScore := len(right.Nodes) * 100
// add two points for every node perturbation, and one
// point for every node that starts after genesis.
for _, n := range left.Nodes {
leftScore += (len(n.Perturb) * 2)
if n.StartAt > 0 {
leftScore += 3
}
}
for _, n := range right.Nodes {
rightScore += (len(n.Perturb) * 2)
if n.StartAt > 0 {
rightScore += 3
}
}
// add one point if the network has evidence.
if left.Evidence > 0 {
leftScore += 2
}
if right.Evidence > 0 {
rightScore += 2
}
if left.TxSize > right.TxSize {
leftScore++
}
if right.TxSize > left.TxSize {
rightScore++
}
if reverse {
return leftScore >= rightScore
}
return leftScore < rightScore
})
}
// SplitGroups divides a list of manifests into n groups of
// manifests.
func SplitGroups(groups int, manifests []Manifest) [][]Manifest {
groupSize := (len(manifests) + groups - 1) / groups
splitManifests := make([][]Manifest, 0, groups)
for i := 0; i < len(manifests); i += groupSize {
grp := make([]Manifest, groupSize)
n := copy(grp, manifests[i:])
splitManifests = append(splitManifests, grp[:n])
}
return splitManifests
}
// WriteManifests writes a collection of manifests into files with the
// specified path prefix.
func WriteManifests(prefix string, manifests []Manifest) error {
for i, manifest := range manifests {
if err := manifest.Save(fmt.Sprintf("%s-%04d.toml", prefix, i)); err != nil {
return err
}
}
return nil
}