You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

408 lines
13 KiB

package pex
import (
"context"
"fmt"
"sync"
"time"
"github.com/tendermint/tendermint/internal/p2p"
"github.com/tendermint/tendermint/internal/p2p/conn"
"github.com/tendermint/tendermint/libs/log"
"github.com/tendermint/tendermint/libs/service"
protop2p "github.com/tendermint/tendermint/proto/tendermint/p2p"
"github.com/tendermint/tendermint/types"
)
var (
_ service.Service = (*Reactor)(nil)
_ p2p.Wrapper = (*protop2p.PexMessage)(nil)
)
const (
// PexChannel is a channel for PEX messages
PexChannel = 0x00
// over-estimate of max NetAddress size
// hexID (40) + IP (16) + Port (2) + Name (100) ...
// NOTE: dont use massive DNS name ..
maxAddressSize = 256
// max addresses returned by GetSelection
// NOTE: this must match "maxMsgSize"
maxGetSelection = 250
// NOTE: amplification factor!
// small request results in up to maxMsgSize response
maxMsgSize = maxAddressSize * maxGetSelection
// the minimum time one peer can send another request to the same peer
minReceiveRequestInterval = 100 * time.Millisecond
// the maximum amount of addresses that can be included in a response
maxAddresses = 100
// How long to wait when there are no peers available before trying again
noAvailablePeersWaitPeriod = 1 * time.Second
// indicates the ping rate of the pex reactor when the peer store is full.
// The reactor should still look to add new peers in order to flush out low
// scoring peers that are still in the peer store
fullCapacityInterval = 10 * time.Minute
)
// TODO: We should decide whether we want channel descriptors to be housed
// within each reactor (as they are now) or, considering that the reactor doesn't
// really need to care about the channel descriptors, if they should be housed
// in the node module.
func ChannelDescriptor() *conn.ChannelDescriptor {
return &conn.ChannelDescriptor{
ID: PexChannel,
MessageType: new(protop2p.PexMessage),
Priority: 1,
SendQueueCapacity: 10,
RecvMessageCapacity: maxMsgSize,
RecvBufferCapacity: 128,
}
}
// The peer exchange or PEX reactor supports the peer manager by sending
// requests to other peers for addresses that can be given to the peer manager
// and at the same time advertises addresses to peers that need more.
//
// The reactor is able to tweak the intensity of it's search by decreasing or
// increasing the interval between each request. It tracks connected peers via
// a linked list, sending a request to the node at the front of the list and
// adding it to the back of the list once a response is received.
type Reactor struct {
service.BaseService
logger log.Logger
peerManager *p2p.PeerManager
pexCh *p2p.Channel
peerUpdates *p2p.PeerUpdates
// list of available peers to loop through and send peer requests to
availablePeers map[types.NodeID]struct{}
mtx sync.RWMutex
// requestsSent keeps track of which peers the PEX reactor has sent requests
// to. This prevents the sending of spurious responses.
// NOTE: If a node never responds, they will remain in this map until a
// peer down status update is sent
requestsSent map[types.NodeID]struct{}
// lastReceivedRequests keeps track of when peers send a request to prevent
// peers from sending requests too often (as defined by
// minReceiveRequestInterval).
lastReceivedRequests map[types.NodeID]time.Time
// the total number of unique peers added
totalPeers int
}
// NewReactor returns a reference to a new reactor.
func NewReactor(
ctx context.Context,
logger log.Logger,
peerManager *p2p.PeerManager,
channelCreator p2p.ChannelCreator,
peerUpdates *p2p.PeerUpdates,
) (*Reactor, error) {
channel, err := channelCreator(ctx, ChannelDescriptor())
if err != nil {
return nil, err
}
r := &Reactor{
logger: logger,
peerManager: peerManager,
pexCh: channel,
peerUpdates: peerUpdates,
availablePeers: make(map[types.NodeID]struct{}),
requestsSent: make(map[types.NodeID]struct{}),
lastReceivedRequests: make(map[types.NodeID]time.Time),
}
r.BaseService = *service.NewBaseService(logger, "PEX", r)
return r, nil
}
// OnStart starts separate go routines for each p2p Channel and listens for
// envelopes on each. In addition, it also listens for peer updates and handles
// messages on that p2p channel accordingly. The caller must be sure to execute
// OnStop to ensure the outbound p2p Channels are closed.
func (r *Reactor) OnStart(ctx context.Context) error {
go r.processPexCh(ctx)
go r.processPeerUpdates(ctx)
return nil
}
// OnStop stops the reactor by signaling to all spawned goroutines to exit and
// blocking until they all exit.
func (r *Reactor) OnStop() {}
// processPexCh implements a blocking event loop where we listen for p2p
// Envelope messages from the pexCh.
func (r *Reactor) processPexCh(ctx context.Context) {
incoming := make(chan *p2p.Envelope)
go func() {
defer close(incoming)
iter := r.pexCh.Receive(ctx)
for iter.Next(ctx) {
select {
case <-ctx.Done():
return
case incoming <- iter.Envelope():
}
}
}()
// Initially, we will request peers quickly to bootstrap. This duration
// will be adjusted upward as knowledge of the network grows.
var nextPeerRequest = minReceiveRequestInterval
timer := time.NewTimer(0)
defer timer.Stop()
for {
timer.Reset(nextPeerRequest)
select {
case <-ctx.Done():
return
case <-timer.C:
// Send a request for more peer addresses.
if err := r.sendRequestForPeers(ctx); err != nil {
return
// TODO(creachadair): Do we really want to stop processing the PEX
// channel just because of an error here?
}
// Note we do not update the poll timer upon making a request, only
// when we receive an update that updates our priors.
case envelope, ok := <-incoming:
if !ok {
return // channel closed
}
// A request from another peer, or a response to one of our requests.
dur, err := r.handlePexMessage(ctx, envelope)
if err != nil {
r.logger.Error("failed to process message",
"ch_id", r.pexCh.ID, "envelope", envelope, "err", err)
if serr := r.pexCh.SendError(ctx, p2p.PeerError{
NodeID: envelope.From,
Err: err,
}); serr != nil {
return
}
} else if dur != 0 {
// We got a useful result; update the poll timer.
nextPeerRequest = dur
}
}
}
}
// processPeerUpdates initiates a blocking process where we listen for and handle
// PeerUpdate messages. When the reactor is stopped, we will catch the signal and
// close the p2p PeerUpdatesCh gracefully.
func (r *Reactor) processPeerUpdates(ctx context.Context) {
for {
select {
case <-ctx.Done():
return
case peerUpdate := <-r.peerUpdates.Updates():
r.processPeerUpdate(peerUpdate)
}
}
}
// handlePexMessage handles envelopes sent from peers on the PexChannel.
// If an update was received, a new polling interval is returned; otherwise the
// duration is 0.
func (r *Reactor) handlePexMessage(ctx context.Context, envelope *p2p.Envelope) (time.Duration, error) {
logger := r.logger.With("peer", envelope.From)
switch msg := envelope.Message.(type) {
case *protop2p.PexRequest:
// Verify that this peer hasn't sent us another request too recently.
if err := r.markPeerRequest(envelope.From); err != nil {
return 0, err
}
// Fetch peers from the peer manager, convert NodeAddresses into URL
// strings, and send them back to the caller.
nodeAddresses := r.peerManager.Advertise(envelope.From, maxAddresses)
pexAddresses := make([]protop2p.PexAddress, len(nodeAddresses))
for idx, addr := range nodeAddresses {
pexAddresses[idx] = protop2p.PexAddress{
URL: addr.String(),
}
}
return 0, r.pexCh.Send(ctx, p2p.Envelope{
To: envelope.From,
Message: &protop2p.PexResponse{Addresses: pexAddresses},
})
case *protop2p.PexResponse:
// Verify that this response corresponds to one of our pending requests.
if err := r.markPeerResponse(envelope.From); err != nil {
return 0, err
}
// Verify that the response does not exceed the safety limit.
if len(msg.Addresses) > maxAddresses {
return 0, fmt.Errorf("peer sent too many addresses (%d > maxiumum %d)",
len(msg.Addresses), maxAddresses)
}
var numAdded int
for _, pexAddress := range msg.Addresses {
peerAddress, err := p2p.ParseNodeAddress(pexAddress.URL)
if err != nil {
continue
}
added, err := r.peerManager.Add(peerAddress)
if err != nil {
logger.Error("failed to add PEX address", "address", peerAddress, "err", err)
continue
}
if added {
numAdded++
logger.Debug("added PEX address", "address", peerAddress)
}
}
return r.calculateNextRequestTime(numAdded), nil
default:
return 0, fmt.Errorf("received unknown message: %T", msg)
}
}
// processPeerUpdate processes a PeerUpdate. For added peers, PeerStatusUp, we
// send a request for addresses.
func (r *Reactor) processPeerUpdate(peerUpdate p2p.PeerUpdate) {
r.logger.Debug("received PEX peer update", "peer", peerUpdate.NodeID, "status", peerUpdate.Status)
r.mtx.Lock()
defer r.mtx.Unlock()
switch peerUpdate.Status {
case p2p.PeerStatusUp:
r.availablePeers[peerUpdate.NodeID] = struct{}{}
case p2p.PeerStatusDown:
delete(r.availablePeers, peerUpdate.NodeID)
delete(r.requestsSent, peerUpdate.NodeID)
delete(r.lastReceivedRequests, peerUpdate.NodeID)
default:
}
}
// sendRequestForPeers chooses a peer from the set of available peers and sends
// that peer a request for more peer addresses. The chosen peer is moved into
// the requestsSent bucket so that we will not attempt to contact them again
// until they've replied or updated.
func (r *Reactor) sendRequestForPeers(ctx context.Context) error {
r.mtx.Lock()
defer r.mtx.Unlock()
if len(r.availablePeers) == 0 {
// no peers are available
r.logger.Debug("no available peers to send a PEX request to (retrying)")
return nil
}
// Select an arbitrary peer from the available set.
var peerID types.NodeID
for peerID = range r.availablePeers {
break
}
if err := r.pexCh.Send(ctx, p2p.Envelope{
To: peerID,
Message: &protop2p.PexRequest{},
}); err != nil {
return err
}
// Move the peer from available to pending.
delete(r.availablePeers, peerID)
r.requestsSent[peerID] = struct{}{}
return nil
}
// calculateNextRequestTime selects how long we should wait before attempting
// to send out another request for peer addresses.
//
// This implements a simplified proportional control mechanism to poll more
// often when our knowledge of the network is incomplete, and less often as our
// knowledge grows. To estimate our knowledge of the network, we use the
// fraction of "new" peers (addresses we have not previously seen) to the total
// so far observed. When we first join the network, this fraction will be close
// to 1, meaning most new peers are "new" to us, and as we discover more peers,
// the fraction will go toward zero.
//
// The minimum interval will be minReceiveRequestInterval to ensure we will not
// request from any peer more often than we would allow them to do from us.
func (r *Reactor) calculateNextRequestTime(added int) time.Duration {
r.mtx.Lock()
defer r.mtx.Unlock()
r.totalPeers += added
// If the peer store is nearly full, wait the maximum interval.
if ratio := r.peerManager.PeerRatio(); ratio >= 0.95 {
r.logger.Debug("Peer manager is nearly full",
"sleep_period", fullCapacityInterval, "ratio", ratio)
return fullCapacityInterval
}
// If there are no available peers to query, poll less aggressively.
if len(r.availablePeers) == 0 {
r.logger.Debug("No available peers to send a PEX request",
"sleep_period", noAvailablePeersWaitPeriod)
return noAvailablePeersWaitPeriod
}
// Reaching here, there are available peers to query and the peer store
// still has space. Estimate our knowledge of the network from the latest
// update and choose a new interval.
base := float64(minReceiveRequestInterval) / float64(len(r.availablePeers))
multiplier := float64(r.totalPeers+1) / float64(added+1) // +1 to avert zero division
return time.Duration(base*multiplier*multiplier) + minReceiveRequestInterval
}
func (r *Reactor) markPeerRequest(peer types.NodeID) error {
r.mtx.Lock()
defer r.mtx.Unlock()
if lastRequestTime, ok := r.lastReceivedRequests[peer]; ok {
if d := time.Since(lastRequestTime); d < minReceiveRequestInterval {
return fmt.Errorf("peer %v sent PEX request too soon (%v < minimum %v)",
peer, d, minReceiveRequestInterval)
}
}
r.lastReceivedRequests[peer] = time.Now()
return nil
}
func (r *Reactor) markPeerResponse(peer types.NodeID) error {
r.mtx.Lock()
defer r.mtx.Unlock()
// check if a request to this peer was sent
if _, ok := r.requestsSent[peer]; !ok {
return fmt.Errorf("peer sent a PEX response when none was requested (%v)", peer)
}
delete(r.requestsSent, peer)
// attach to the back of the list so that the peer can be used again for
// future requests
r.availablePeers[peer] = struct{}{}
return nil
}