You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

289 lines
8.3 KiB

package consensus
import (
"context"
"fmt"
"sync"
"testing"
"time"
"github.com/stretchr/testify/require"
"github.com/tendermint/tendermint/libs/service"
"github.com/tendermint/tendermint/p2p"
tmproto "github.com/tendermint/tendermint/proto/tendermint/types"
sm "github.com/tendermint/tendermint/state"
"github.com/tendermint/tendermint/types"
)
//----------------------------------------------
// byzantine failures
// 4 validators. 1 is byzantine. The other three are partitioned into A (1 val) and B (2 vals).
// byzantine validator sends conflicting proposals into A and B,
// and prevotes/precommits on both of them.
// B sees a commit, A doesn't.
// Byzantine validator refuses to prevote.
// Heal partition and ensure A sees the commit
func TestByzantine(t *testing.T) {
N := 4
logger := consensusLogger().With("test", "byzantine")
css, cleanup := randConsensusNet(N, "consensus_byzantine_test", newMockTickerFunc(false), newCounter)
defer cleanup()
// give the byzantine validator a normal ticker
ticker := NewTimeoutTicker()
ticker.SetLogger(css[0].Logger)
css[0].SetTimeoutTicker(ticker)
switches := make([]*p2p.Switch, N)
p2pLogger := logger.With("module", "p2p")
for i := 0; i < N; i++ {
switches[i] = p2p.MakeSwitch(
config.P2P,
i,
"foo", "1.0.0",
func(i int, sw *p2p.Switch) *p2p.Switch {
return sw
})
switches[i].SetLogger(p2pLogger.With("validator", i))
}
blocksSubs := make([]types.Subscription, N)
reactors := make([]p2p.Reactor, N)
for i := 0; i < N; i++ {
// make first val byzantine
if i == 0 {
// NOTE: Now, test validators are MockPV, which by default doesn't
// do any safety checks.
css[i].privValidator.(types.MockPV).DisableChecks()
css[i].decideProposal = func(j int32) func(int64, int32) {
return func(height int64, round int32) {
byzantineDecideProposalFunc(t, height, round, css[j], switches[j])
}
}(int32(i))
css[i].doPrevote = func(height int64, round int32) {}
}
eventBus := css[i].eventBus
eventBus.SetLogger(logger.With("module", "events", "validator", i))
var err error
blocksSubs[i], err = eventBus.Subscribe(context.Background(), testSubscriber, types.EventQueryNewBlock)
require.NoError(t, err)
conR := NewReactor(css[i], true) // so we don't start the consensus states
conR.SetLogger(logger.With("validator", i))
conR.SetEventBus(eventBus)
var conRI p2p.Reactor = conR
// make first val byzantine
if i == 0 {
conRI = NewByzantineReactor(conR)
}
reactors[i] = conRI
sm.SaveState(css[i].blockExec.DB(), css[i].state) //for save height 1's validators info
}
defer func() {
for _, r := range reactors {
if rr, ok := r.(*ByzantineReactor); ok {
rr.reactor.Switch.Stop()
} else {
r.(*Reactor).Switch.Stop()
}
}
}()
p2p.MakeConnectedSwitches(config.P2P, N, func(i int, s *p2p.Switch) *p2p.Switch {
// ignore new switch s, we already made ours
switches[i].AddReactor("CONSENSUS", reactors[i])
return switches[i]
}, func(sws []*p2p.Switch, i, j int) {
// the network starts partitioned with globally active adversary
if i != 0 {
return
}
p2p.Connect2Switches(sws, i, j)
})
// start the non-byz state machines.
// note these must be started before the byz
for i := 1; i < N; i++ {
cr := reactors[i].(*Reactor)
cr.SwitchToConsensus(cr.conS.GetState(), false)
}
// start the byzantine state machine
byzR := reactors[0].(*ByzantineReactor)
s := byzR.reactor.conS.GetState()
byzR.reactor.SwitchToConsensus(s, false)
// byz proposer sends one block to peers[0]
// and the other block to peers[1] and peers[2].
// note peers and switches order don't match.
peers := switches[0].Peers().List()
// partition A
ind0 := getSwitchIndex(switches, peers[0])
// partition B
ind1 := getSwitchIndex(switches, peers[1])
ind2 := getSwitchIndex(switches, peers[2])
p2p.Connect2Switches(switches, ind1, ind2)
// wait for someone in the big partition (B) to make a block
<-blocksSubs[ind2].Out()
t.Log("A block has been committed. Healing partition")
p2p.Connect2Switches(switches, ind0, ind1)
p2p.Connect2Switches(switches, ind0, ind2)
// wait till everyone makes the first new block
// (one of them already has)
wg := new(sync.WaitGroup)
wg.Add(2)
for i := 1; i < N-1; i++ {
go func(j int) {
<-blocksSubs[j].Out()
wg.Done()
}(i)
}
done := make(chan struct{})
go func() {
wg.Wait()
close(done)
}()
tick := time.NewTicker(time.Second * 10)
select {
case <-done:
case <-tick.C:
for i, reactor := range reactors {
t.Log(fmt.Sprintf("Consensus Reactor %v", i))
t.Log(fmt.Sprintf("%v", reactor))
}
t.Fatalf("Timed out waiting for all validators to commit first block")
}
}
//-------------------------------
// byzantine consensus functions
func byzantineDecideProposalFunc(t *testing.T, height int64, round int32, cs *State, sw *p2p.Switch) {
// byzantine user should create two proposals and try to split the vote.
// Avoid sending on internalMsgQueue and running consensus state.
// Create a new proposal block from state/txs from the mempool.
block1, blockParts1 := cs.createProposalBlock()
polRound, propBlockID := cs.ValidRound, types.BlockID{Hash: block1.Hash(), PartSetHeader: blockParts1.Header()}
proposal1 := types.NewProposal(height, round, polRound, propBlockID)
p1 := proposal1.ToProto()
if err := cs.privValidator.SignProposal(cs.state.ChainID, p1); err != nil {
t.Error(err)
}
proposal1.Signature = p1.Signature
// Create a new proposal block from state/txs from the mempool.
block2, blockParts2 := cs.createProposalBlock()
polRound, propBlockID = cs.ValidRound, types.BlockID{Hash: block2.Hash(), PartSetHeader: blockParts2.Header()}
proposal2 := types.NewProposal(height, round, polRound, propBlockID)
p2 := proposal2.ToProto()
if err := cs.privValidator.SignProposal(cs.state.ChainID, p2); err != nil {
t.Error(err)
}
proposal2.Signature = p2.Signature
block1Hash := block1.Hash()
block2Hash := block2.Hash()
// broadcast conflicting proposals/block parts to peers
peers := sw.Peers().List()
t.Logf("Byzantine: broadcasting conflicting proposals to %d peers", len(peers))
for i, peer := range peers {
if i < len(peers)/2 {
go sendProposalAndParts(height, round, cs, peer, proposal1, block1Hash, blockParts1)
} else {
go sendProposalAndParts(height, round, cs, peer, proposal2, block2Hash, blockParts2)
}
}
}
func sendProposalAndParts(
height int64,
round int32,
cs *State,
peer p2p.Peer,
proposal *types.Proposal,
blockHash []byte,
parts *types.PartSet,
) {
// proposal
msg := &ProposalMessage{Proposal: proposal}
peer.Send(DataChannel, MustEncode(msg))
// parts
for i := 0; i < int(parts.Total()); i++ {
part := parts.GetPart(i)
msg := &BlockPartMessage{
Height: height, // This tells peer that this part applies to us.
Round: round, // This tells peer that this part applies to us.
Part: part,
}
peer.Send(DataChannel, MustEncode(msg))
}
// votes
cs.mtx.Lock()
prevote, _ := cs.signVote(tmproto.PrevoteType, blockHash, parts.Header())
precommit, _ := cs.signVote(tmproto.PrecommitType, blockHash, parts.Header())
cs.mtx.Unlock()
peer.Send(VoteChannel, MustEncode(&VoteMessage{prevote}))
peer.Send(VoteChannel, MustEncode(&VoteMessage{precommit}))
}
//----------------------------------------
// byzantine consensus reactor
type ByzantineReactor struct {
service.Service
reactor *Reactor
}
func NewByzantineReactor(conR *Reactor) *ByzantineReactor {
return &ByzantineReactor{
Service: conR,
reactor: conR,
}
}
func (br *ByzantineReactor) SetSwitch(s *p2p.Switch) { br.reactor.SetSwitch(s) }
func (br *ByzantineReactor) GetChannels() []*p2p.ChannelDescriptor { return br.reactor.GetChannels() }
func (br *ByzantineReactor) AddPeer(peer p2p.Peer) {
if !br.reactor.IsRunning() {
return
}
// Create peerState for peer
peerState := NewPeerState(peer).SetLogger(br.reactor.Logger)
peer.Set(types.PeerStateKey, peerState)
// Send our state to peer.
// If we're syncing, broadcast a RoundStepMessage later upon SwitchToConsensus().
if !br.reactor.waitSync {
br.reactor.sendNewRoundStepMessage(peer)
}
}
func (br *ByzantineReactor) RemovePeer(peer p2p.Peer, reason interface{}) {
br.reactor.RemovePeer(peer, reason)
}
func (br *ByzantineReactor) Receive(chID byte, peer p2p.Peer, msgBytes []byte) {
br.reactor.Receive(chID, peer, msgBytes)
}
func (br *ByzantineReactor) InitPeer(peer p2p.Peer) p2p.Peer { return peer }