package blocksync
|
|
|
|
import (
|
|
"context"
|
|
"errors"
|
|
"fmt"
|
|
"runtime/debug"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"github.com/tendermint/tendermint/internal/consensus"
|
|
"github.com/tendermint/tendermint/internal/eventbus"
|
|
"github.com/tendermint/tendermint/internal/p2p"
|
|
sm "github.com/tendermint/tendermint/internal/state"
|
|
"github.com/tendermint/tendermint/internal/store"
|
|
"github.com/tendermint/tendermint/libs/log"
|
|
"github.com/tendermint/tendermint/libs/service"
|
|
bcproto "github.com/tendermint/tendermint/proto/tendermint/blocksync"
|
|
"github.com/tendermint/tendermint/types"
|
|
)
|
|
|
|
var _ service.Service = (*Reactor)(nil)
|
|
|
|
const (
|
|
// BlockSyncChannel is a channel for blocks and status updates
|
|
BlockSyncChannel = p2p.ChannelID(0x40)
|
|
|
|
trySyncIntervalMS = 10
|
|
|
|
// ask for best height every 10s
|
|
statusUpdateIntervalSeconds = 10
|
|
|
|
// check if we should switch to consensus reactor
|
|
switchToConsensusIntervalSeconds = 1
|
|
|
|
// switch to consensus after this duration of inactivity
|
|
syncTimeout = 60 * time.Second
|
|
)
|
|
|
|
func GetChannelDescriptor() *p2p.ChannelDescriptor {
|
|
return &p2p.ChannelDescriptor{
|
|
ID: BlockSyncChannel,
|
|
MessageType: new(bcproto.Message),
|
|
Priority: 5,
|
|
SendQueueCapacity: 1000,
|
|
RecvBufferCapacity: 1024,
|
|
RecvMessageCapacity: MaxMsgSize,
|
|
}
|
|
}
|
|
|
|
type consensusReactor interface {
|
|
// For when we switch from block sync reactor to the consensus
|
|
// machine.
|
|
SwitchToConsensus(ctx context.Context, state sm.State, skipWAL bool)
|
|
}
|
|
|
|
type peerError struct {
|
|
err error
|
|
peerID types.NodeID
|
|
}
|
|
|
|
func (e peerError) Error() string {
|
|
return fmt.Sprintf("error with peer %v: %s", e.peerID, e.err.Error())
|
|
}
|
|
|
|
// Reactor handles long-term catchup syncing.
|
|
type Reactor struct {
|
|
service.BaseService
|
|
logger log.Logger
|
|
|
|
// immutable
|
|
initialState sm.State
|
|
|
|
blockExec *sm.BlockExecutor
|
|
store *store.BlockStore
|
|
pool *BlockPool
|
|
consReactor consensusReactor
|
|
blockSync *atomicBool
|
|
|
|
blockSyncCh *p2p.Channel
|
|
// blockSyncOutBridgeCh defines a channel that acts as a bridge between sending Envelope
|
|
// messages that the reactor will consume in processBlockSyncCh and receiving messages
|
|
// from the peer updates channel and other goroutines. We do this instead of directly
|
|
// sending on blockSyncCh.Out to avoid race conditions in the case where other goroutines
|
|
// send Envelopes directly to the to blockSyncCh.Out channel, since processBlockSyncCh
|
|
// may close the blockSyncCh.Out channel at the same time that other goroutines send to
|
|
// blockSyncCh.Out.
|
|
blockSyncOutBridgeCh chan p2p.Envelope
|
|
peerUpdates *p2p.PeerUpdates
|
|
|
|
requestsCh <-chan BlockRequest
|
|
errorsCh <-chan peerError
|
|
|
|
// poolWG is used to synchronize the graceful shutdown of the poolRoutine and
|
|
// requestRoutine spawned goroutines when stopping the reactor and before
|
|
// stopping the p2p Channel(s).
|
|
poolWG sync.WaitGroup
|
|
|
|
metrics *consensus.Metrics
|
|
eventBus *eventbus.EventBus
|
|
|
|
syncStartTime time.Time
|
|
}
|
|
|
|
// NewReactor returns new reactor instance.
|
|
func NewReactor(
|
|
ctx context.Context,
|
|
logger log.Logger,
|
|
state sm.State,
|
|
blockExec *sm.BlockExecutor,
|
|
store *store.BlockStore,
|
|
consReactor consensusReactor,
|
|
channelCreator p2p.ChannelCreator,
|
|
peerUpdates *p2p.PeerUpdates,
|
|
blockSync bool,
|
|
metrics *consensus.Metrics,
|
|
eventBus *eventbus.EventBus,
|
|
) (*Reactor, error) {
|
|
|
|
if state.LastBlockHeight != store.Height() {
|
|
return nil, fmt.Errorf("state (%v) and store (%v) height mismatch", state.LastBlockHeight, store.Height())
|
|
}
|
|
|
|
startHeight := store.Height() + 1
|
|
if startHeight == 1 {
|
|
startHeight = state.InitialHeight
|
|
}
|
|
|
|
requestsCh := make(chan BlockRequest, maxTotalRequesters)
|
|
errorsCh := make(chan peerError, maxPeerErrBuffer) // NOTE: The capacity should be larger than the peer count.
|
|
|
|
blockSyncCh, err := channelCreator(ctx, GetChannelDescriptor())
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
r := &Reactor{
|
|
logger: logger,
|
|
initialState: state,
|
|
blockExec: blockExec,
|
|
store: store,
|
|
pool: NewBlockPool(logger, startHeight, requestsCh, errorsCh),
|
|
consReactor: consReactor,
|
|
blockSync: newAtomicBool(blockSync),
|
|
requestsCh: requestsCh,
|
|
errorsCh: errorsCh,
|
|
blockSyncCh: blockSyncCh,
|
|
blockSyncOutBridgeCh: make(chan p2p.Envelope),
|
|
peerUpdates: peerUpdates,
|
|
metrics: metrics,
|
|
eventBus: eventBus,
|
|
syncStartTime: time.Time{},
|
|
}
|
|
|
|
r.BaseService = *service.NewBaseService(logger, "BlockSync", r)
|
|
return r, nil
|
|
}
|
|
|
|
// OnStart starts separate go routines for each p2p Channel and listens for
|
|
// envelopes on each. In addition, it also listens for peer updates and handles
|
|
// messages on that p2p channel accordingly. The caller must be sure to execute
|
|
// OnStop to ensure the outbound p2p Channels are closed.
|
|
//
|
|
// If blockSync is enabled, we also start the pool and the pool processing
|
|
// goroutine. If the pool fails to start, an error is returned.
|
|
func (r *Reactor) OnStart(ctx context.Context) error {
|
|
if r.blockSync.IsSet() {
|
|
if err := r.pool.Start(ctx); err != nil {
|
|
return err
|
|
}
|
|
r.poolWG.Add(1)
|
|
go r.requestRoutine(ctx)
|
|
|
|
r.poolWG.Add(1)
|
|
go r.poolRoutine(ctx, false)
|
|
}
|
|
|
|
go r.processBlockSyncCh(ctx)
|
|
go r.processBlockSyncBridge(ctx)
|
|
go r.processPeerUpdates(ctx)
|
|
|
|
return nil
|
|
}
|
|
|
|
// OnStop stops the reactor by signaling to all spawned goroutines to exit and
|
|
// blocking until they all exit.
|
|
func (r *Reactor) OnStop() {
|
|
if r.blockSync.IsSet() {
|
|
if err := r.pool.Stop(); err != nil {
|
|
r.logger.Error("failed to stop pool", "err", err)
|
|
}
|
|
}
|
|
|
|
// wait for the poolRoutine and requestRoutine goroutines to gracefully exit
|
|
r.poolWG.Wait()
|
|
}
|
|
|
|
// respondToPeer loads a block and sends it to the requesting peer, if we have it.
|
|
// Otherwise, we'll respond saying we do not have it.
|
|
func (r *Reactor) respondToPeer(ctx context.Context, msg *bcproto.BlockRequest, peerID types.NodeID) error {
|
|
block := r.store.LoadBlock(msg.Height)
|
|
if block != nil {
|
|
blockProto, err := block.ToProto()
|
|
if err != nil {
|
|
r.logger.Error("failed to convert msg to protobuf", "err", err)
|
|
return err
|
|
}
|
|
|
|
return r.blockSyncCh.Send(ctx, p2p.Envelope{
|
|
To: peerID,
|
|
Message: &bcproto.BlockResponse{Block: blockProto},
|
|
})
|
|
}
|
|
|
|
r.logger.Info("peer requesting a block we do not have", "peer", peerID, "height", msg.Height)
|
|
|
|
return r.blockSyncCh.Send(ctx, p2p.Envelope{
|
|
To: peerID,
|
|
Message: &bcproto.NoBlockResponse{Height: msg.Height},
|
|
})
|
|
}
|
|
|
|
// handleBlockSyncMessage handles envelopes sent from peers on the
|
|
// BlockSyncChannel. It returns an error only if the Envelope.Message is unknown
|
|
// for this channel. This should never be called outside of handleMessage.
|
|
func (r *Reactor) handleBlockSyncMessage(ctx context.Context, envelope *p2p.Envelope) error {
|
|
logger := r.logger.With("peer", envelope.From)
|
|
|
|
switch msg := envelope.Message.(type) {
|
|
case *bcproto.BlockRequest:
|
|
return r.respondToPeer(ctx, msg, envelope.From)
|
|
case *bcproto.BlockResponse:
|
|
block, err := types.BlockFromProto(msg.Block)
|
|
if err != nil {
|
|
logger.Error("failed to convert block from proto", "err", err)
|
|
return err
|
|
}
|
|
|
|
r.pool.AddBlock(envelope.From, block, block.Size())
|
|
|
|
case *bcproto.StatusRequest:
|
|
return r.blockSyncCh.Send(ctx, p2p.Envelope{
|
|
To: envelope.From,
|
|
Message: &bcproto.StatusResponse{
|
|
Height: r.store.Height(),
|
|
Base: r.store.Base(),
|
|
},
|
|
})
|
|
case *bcproto.StatusResponse:
|
|
r.pool.SetPeerRange(envelope.From, msg.Base, msg.Height)
|
|
|
|
case *bcproto.NoBlockResponse:
|
|
logger.Debug("peer does not have the requested block", "height", msg.Height)
|
|
|
|
default:
|
|
return fmt.Errorf("received unknown message: %T", msg)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// handleMessage handles an Envelope sent from a peer on a specific p2p Channel.
|
|
// It will handle errors and any possible panics gracefully. A caller can handle
|
|
// any error returned by sending a PeerError on the respective channel.
|
|
func (r *Reactor) handleMessage(ctx context.Context, chID p2p.ChannelID, envelope *p2p.Envelope) (err error) {
|
|
defer func() {
|
|
if e := recover(); e != nil {
|
|
err = fmt.Errorf("panic in processing message: %v", e)
|
|
r.logger.Error(
|
|
"recovering from processing message panic",
|
|
"err", err,
|
|
"stack", string(debug.Stack()),
|
|
)
|
|
}
|
|
}()
|
|
|
|
r.logger.Debug("received message", "message", envelope.Message, "peer", envelope.From)
|
|
|
|
switch chID {
|
|
case BlockSyncChannel:
|
|
err = r.handleBlockSyncMessage(ctx, envelope)
|
|
|
|
default:
|
|
err = fmt.Errorf("unknown channel ID (%d) for envelope (%v)", chID, envelope)
|
|
}
|
|
|
|
return err
|
|
}
|
|
|
|
// processBlockSyncCh initiates a blocking process where we listen for and handle
|
|
// envelopes on the BlockSyncChannel and blockSyncOutBridgeCh. Any error encountered during
|
|
// message execution will result in a PeerError being sent on the BlockSyncChannel.
|
|
// When the reactor is stopped, we will catch the signal and close the p2p Channel
|
|
// gracefully.
|
|
func (r *Reactor) processBlockSyncCh(ctx context.Context) {
|
|
iter := r.blockSyncCh.Receive(ctx)
|
|
for iter.Next(ctx) {
|
|
envelope := iter.Envelope()
|
|
if err := r.handleMessage(ctx, r.blockSyncCh.ID, envelope); err != nil {
|
|
if errors.Is(err, context.Canceled) || errors.Is(err, context.DeadlineExceeded) {
|
|
return
|
|
}
|
|
|
|
r.logger.Error("failed to process message", "ch_id", r.blockSyncCh.ID, "envelope", envelope, "err", err)
|
|
if serr := r.blockSyncCh.SendError(ctx, p2p.PeerError{
|
|
NodeID: envelope.From,
|
|
Err: err,
|
|
}); serr != nil {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func (r *Reactor) processBlockSyncBridge(ctx context.Context) {
|
|
for {
|
|
select {
|
|
case <-ctx.Done():
|
|
return
|
|
case envelope := <-r.blockSyncOutBridgeCh:
|
|
if err := r.blockSyncCh.Send(ctx, envelope); err != nil {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// processPeerUpdate processes a PeerUpdate.
|
|
func (r *Reactor) processPeerUpdate(peerUpdate p2p.PeerUpdate) {
|
|
r.logger.Debug("received peer update", "peer", peerUpdate.NodeID, "status", peerUpdate.Status)
|
|
|
|
// XXX: Pool#RedoRequest can sometimes give us an empty peer.
|
|
if len(peerUpdate.NodeID) == 0 {
|
|
return
|
|
}
|
|
|
|
switch peerUpdate.Status {
|
|
case p2p.PeerStatusUp:
|
|
// send a status update the newly added peer
|
|
r.blockSyncOutBridgeCh <- p2p.Envelope{
|
|
To: peerUpdate.NodeID,
|
|
Message: &bcproto.StatusResponse{
|
|
Base: r.store.Base(),
|
|
Height: r.store.Height(),
|
|
},
|
|
}
|
|
|
|
case p2p.PeerStatusDown:
|
|
r.pool.RemovePeer(peerUpdate.NodeID)
|
|
}
|
|
}
|
|
|
|
// processPeerUpdates initiates a blocking process where we listen for and handle
|
|
// PeerUpdate messages. When the reactor is stopped, we will catch the signal and
|
|
// close the p2p PeerUpdatesCh gracefully.
|
|
func (r *Reactor) processPeerUpdates(ctx context.Context) {
|
|
for {
|
|
select {
|
|
case <-ctx.Done():
|
|
return
|
|
case peerUpdate := <-r.peerUpdates.Updates():
|
|
r.processPeerUpdate(peerUpdate)
|
|
}
|
|
}
|
|
}
|
|
|
|
// SwitchToBlockSync is called by the state sync reactor when switching to fast
|
|
// sync.
|
|
func (r *Reactor) SwitchToBlockSync(ctx context.Context, state sm.State) error {
|
|
r.blockSync.Set()
|
|
r.initialState = state
|
|
r.pool.height = state.LastBlockHeight + 1
|
|
|
|
if err := r.pool.Start(ctx); err != nil {
|
|
return err
|
|
}
|
|
|
|
r.syncStartTime = time.Now()
|
|
|
|
r.poolWG.Add(1)
|
|
go r.requestRoutine(ctx)
|
|
|
|
r.poolWG.Add(1)
|
|
go r.poolRoutine(ctx, true)
|
|
|
|
return nil
|
|
}
|
|
|
|
func (r *Reactor) requestRoutine(ctx context.Context) {
|
|
statusUpdateTicker := time.NewTicker(statusUpdateIntervalSeconds * time.Second)
|
|
defer statusUpdateTicker.Stop()
|
|
|
|
defer r.poolWG.Done()
|
|
|
|
for {
|
|
select {
|
|
case <-ctx.Done():
|
|
return
|
|
case request := <-r.requestsCh:
|
|
r.blockSyncOutBridgeCh <- p2p.Envelope{
|
|
To: request.PeerID,
|
|
Message: &bcproto.BlockRequest{Height: request.Height},
|
|
}
|
|
case pErr := <-r.errorsCh:
|
|
if err := r.blockSyncCh.SendError(ctx, p2p.PeerError{
|
|
NodeID: pErr.peerID,
|
|
Err: pErr.err,
|
|
}); err != nil {
|
|
return
|
|
}
|
|
case <-statusUpdateTicker.C:
|
|
r.poolWG.Add(1)
|
|
|
|
go func() {
|
|
defer r.poolWG.Done()
|
|
|
|
select {
|
|
case r.blockSyncOutBridgeCh <- p2p.Envelope{
|
|
Broadcast: true,
|
|
Message: &bcproto.StatusRequest{},
|
|
}:
|
|
case <-ctx.Done():
|
|
}
|
|
}()
|
|
}
|
|
}
|
|
}
|
|
|
|
// poolRoutine handles messages from the poolReactor telling the reactor what to
|
|
// do.
|
|
//
|
|
// NOTE: Don't sleep in the FOR_LOOP or otherwise slow it down!
|
|
func (r *Reactor) poolRoutine(ctx context.Context, stateSynced bool) {
|
|
var (
|
|
trySyncTicker = time.NewTicker(trySyncIntervalMS * time.Millisecond)
|
|
switchToConsensusTicker = time.NewTicker(switchToConsensusIntervalSeconds * time.Second)
|
|
|
|
blocksSynced = uint64(0)
|
|
|
|
chainID = r.initialState.ChainID
|
|
state = r.initialState
|
|
|
|
lastHundred = time.Now()
|
|
lastRate = 0.0
|
|
|
|
didProcessCh = make(chan struct{}, 1)
|
|
)
|
|
|
|
defer trySyncTicker.Stop()
|
|
defer switchToConsensusTicker.Stop()
|
|
|
|
defer r.poolWG.Done()
|
|
|
|
FOR_LOOP:
|
|
for {
|
|
select {
|
|
case <-switchToConsensusTicker.C:
|
|
var (
|
|
height, numPending, lenRequesters = r.pool.GetStatus()
|
|
lastAdvance = r.pool.LastAdvance()
|
|
)
|
|
|
|
r.logger.Debug(
|
|
"consensus ticker",
|
|
"num_pending", numPending,
|
|
"total", lenRequesters,
|
|
"height", height,
|
|
)
|
|
|
|
switch {
|
|
case r.pool.IsCaughtUp():
|
|
r.logger.Info("switching to consensus reactor", "height", height)
|
|
|
|
case time.Since(lastAdvance) > syncTimeout:
|
|
r.logger.Error("no progress since last advance", "last_advance", lastAdvance)
|
|
|
|
default:
|
|
r.logger.Info(
|
|
"not caught up yet",
|
|
"height", height,
|
|
"max_peer_height", r.pool.MaxPeerHeight(),
|
|
"timeout_in", syncTimeout-time.Since(lastAdvance),
|
|
)
|
|
continue
|
|
}
|
|
|
|
if err := r.pool.Stop(); err != nil {
|
|
r.logger.Error("failed to stop pool", "err", err)
|
|
}
|
|
|
|
r.blockSync.UnSet()
|
|
|
|
if r.consReactor != nil {
|
|
r.consReactor.SwitchToConsensus(ctx, state, blocksSynced > 0 || stateSynced)
|
|
}
|
|
|
|
break FOR_LOOP
|
|
|
|
case <-trySyncTicker.C:
|
|
select {
|
|
case didProcessCh <- struct{}{}:
|
|
default:
|
|
}
|
|
|
|
case <-didProcessCh:
|
|
// NOTE: It is a subtle mistake to process more than a single block at a
|
|
// time (e.g. 10) here, because we only send one BlockRequest per loop
|
|
// iteration. The ratio mismatch can result in starving of blocks, i.e. a
|
|
// sudden burst of requests and responses, and repeat. Consequently, it is
|
|
// better to split these routines rather than coupling them as it is
|
|
// written here.
|
|
//
|
|
// TODO: Uncouple from request routine.
|
|
|
|
// see if there are any blocks to sync
|
|
first, second := r.pool.PeekTwoBlocks()
|
|
if first == nil || second == nil {
|
|
// we need both to sync the first block
|
|
continue FOR_LOOP
|
|
} else {
|
|
// try again quickly next loop
|
|
didProcessCh <- struct{}{}
|
|
}
|
|
|
|
firstParts, err := first.MakePartSet(types.BlockPartSizeBytes)
|
|
if err != nil {
|
|
r.logger.Error("failed to make ",
|
|
"height", first.Height,
|
|
"err", err.Error())
|
|
break FOR_LOOP
|
|
}
|
|
|
|
var (
|
|
firstPartSetHeader = firstParts.Header()
|
|
firstID = types.BlockID{Hash: first.Hash(), PartSetHeader: firstPartSetHeader}
|
|
)
|
|
|
|
// Finally, verify the first block using the second's commit.
|
|
//
|
|
// NOTE: We can probably make this more efficient, but note that calling
|
|
// first.Hash() doesn't verify the tx contents, so MakePartSet() is
|
|
// currently necessary.
|
|
if err = state.Validators.VerifyCommitLight(chainID, firstID, first.Height, second.LastCommit); err != nil {
|
|
err = fmt.Errorf("invalid last commit: %w", err)
|
|
r.logger.Error(
|
|
err.Error(),
|
|
"last_commit", second.LastCommit,
|
|
"block_id", firstID,
|
|
"height", first.Height,
|
|
)
|
|
|
|
// NOTE: We've already removed the peer's request, but we still need
|
|
// to clean up the rest.
|
|
peerID := r.pool.RedoRequest(first.Height)
|
|
if serr := r.blockSyncCh.SendError(ctx, p2p.PeerError{
|
|
NodeID: peerID,
|
|
Err: err,
|
|
}); serr != nil {
|
|
break FOR_LOOP
|
|
}
|
|
|
|
peerID2 := r.pool.RedoRequest(second.Height)
|
|
if peerID2 != peerID {
|
|
if serr := r.blockSyncCh.SendError(ctx, p2p.PeerError{
|
|
NodeID: peerID2,
|
|
Err: err,
|
|
}); serr != nil {
|
|
break FOR_LOOP
|
|
}
|
|
}
|
|
|
|
continue FOR_LOOP
|
|
} else {
|
|
r.pool.PopRequest()
|
|
|
|
// TODO: batch saves so we do not persist to disk every block
|
|
r.store.SaveBlock(first, firstParts, second.LastCommit)
|
|
|
|
var err error
|
|
|
|
// TODO: Same thing for app - but we would need a way to get the hash
|
|
// without persisting the state.
|
|
state, err = r.blockExec.ApplyBlock(ctx, state, firstID, first)
|
|
if err != nil {
|
|
// TODO: This is bad, are we zombie?
|
|
panic(fmt.Sprintf("failed to process committed block (%d:%X): %v", first.Height, first.Hash(), err))
|
|
}
|
|
|
|
r.metrics.RecordConsMetrics(first)
|
|
|
|
blocksSynced++
|
|
|
|
if blocksSynced%100 == 0 {
|
|
lastRate = 0.9*lastRate + 0.1*(100/time.Since(lastHundred).Seconds())
|
|
r.logger.Info(
|
|
"block sync rate",
|
|
"height", r.pool.height,
|
|
"max_peer_height", r.pool.MaxPeerHeight(),
|
|
"blocks/s", lastRate,
|
|
)
|
|
|
|
lastHundred = time.Now()
|
|
}
|
|
}
|
|
|
|
continue FOR_LOOP
|
|
|
|
case <-ctx.Done():
|
|
break FOR_LOOP
|
|
case <-r.pool.exitedCh:
|
|
break FOR_LOOP
|
|
}
|
|
}
|
|
}
|
|
|
|
func (r *Reactor) GetMaxPeerBlockHeight() int64 {
|
|
return r.pool.MaxPeerHeight()
|
|
}
|
|
|
|
func (r *Reactor) GetTotalSyncedTime() time.Duration {
|
|
if !r.blockSync.IsSet() || r.syncStartTime.IsZero() {
|
|
return time.Duration(0)
|
|
}
|
|
return time.Since(r.syncStartTime)
|
|
}
|
|
|
|
func (r *Reactor) GetRemainingSyncTime() time.Duration {
|
|
if !r.blockSync.IsSet() {
|
|
return time.Duration(0)
|
|
}
|
|
|
|
targetSyncs := r.pool.targetSyncBlocks()
|
|
currentSyncs := r.store.Height() - r.pool.startHeight + 1
|
|
lastSyncRate := r.pool.getLastSyncRate()
|
|
if currentSyncs < 0 || lastSyncRate < 0.001 {
|
|
return time.Duration(0)
|
|
}
|
|
|
|
remain := float64(targetSyncs-currentSyncs) / lastSyncRate
|
|
|
|
return time.Duration(int64(remain * float64(time.Second)))
|
|
}
|
|
|
|
func (r *Reactor) PublishStatus(ctx context.Context, event types.EventDataBlockSyncStatus) error {
|
|
if r.eventBus == nil {
|
|
return errors.New("event bus is not configured")
|
|
}
|
|
return r.eventBus.PublishEventBlockSyncStatus(ctx, event)
|
|
}
|
|
|
|
// atomicBool is an atomic Boolean, safe for concurrent use by multiple
|
|
// goroutines.
|
|
type atomicBool int32
|
|
|
|
// newAtomicBool creates an atomicBool with given initial value.
|
|
func newAtomicBool(ok bool) *atomicBool {
|
|
ab := new(atomicBool)
|
|
if ok {
|
|
ab.Set()
|
|
}
|
|
return ab
|
|
}
|
|
|
|
// Set sets the Boolean to true.
|
|
func (ab *atomicBool) Set() { atomic.StoreInt32((*int32)(ab), 1) }
|
|
|
|
// UnSet sets the Boolean to false.
|
|
func (ab *atomicBool) UnSet() { atomic.StoreInt32((*int32)(ab), 0) }
|
|
|
|
// IsSet returns whether the Boolean is true.
|
|
func (ab *atomicBool) IsSet() bool { return atomic.LoadInt32((*int32)(ab))&1 == 1 }
|