You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

483 lines
11 KiB

package bits
import (
"encoding/binary"
"errors"
"fmt"
"math"
mrand "math/rand"
"regexp"
"strings"
"sync"
tmmath "github.com/tendermint/tendermint/libs/math"
tmrand "github.com/tendermint/tendermint/libs/rand"
tmprotobits "github.com/tendermint/tendermint/proto/tendermint/libs/bits"
)
// BitArray is a thread-safe implementation of a bit array.
type BitArray struct {
mtx sync.Mutex
Bits int `json:"bits"` // NOTE: persisted via reflect, must be exported
Elems []uint64 `json:"elems"` // NOTE: persisted via reflect, must be exported
}
// NewBitArray returns a new bit array.
// It returns nil if the number of bits is zero.
func NewBitArray(bits int) *BitArray {
// Reseed non-deterministically.
tmrand.Reseed()
if bits <= 0 {
return nil
}
bA := &BitArray{}
bA.reset(bits)
return bA
}
// reset changes size of BitArray to `bits` and re-allocates (zeroed) data buffer
func (bA *BitArray) reset(bits int) {
bA.mtx.Lock()
defer bA.mtx.Unlock()
bA.Bits = bits
if bits == 0 {
bA.Elems = nil
} else {
bA.Elems = make([]uint64, numElems(bits))
}
}
// Size returns the number of bits in the bitarray
func (bA *BitArray) Size() int {
if bA == nil {
return 0
}
return bA.Bits
}
// GetIndex returns the bit at index i within the bit array.
// The behavior is undefined if i >= bA.Bits
func (bA *BitArray) GetIndex(i int) bool {
if bA == nil {
return false
}
bA.mtx.Lock()
defer bA.mtx.Unlock()
return bA.getIndex(i)
}
func (bA *BitArray) getIndex(i int) bool {
if i >= bA.Bits {
return false
}
return bA.Elems[i/64]&(uint64(1)<<uint(i%64)) > 0
}
// SetIndex sets the bit at index i within the bit array.
// The behavior is undefined if i >= bA.Bits
func (bA *BitArray) SetIndex(i int, v bool) bool {
if bA == nil {
return false
}
bA.mtx.Lock()
defer bA.mtx.Unlock()
return bA.setIndex(i, v)
}
func (bA *BitArray) setIndex(i int, v bool) bool {
if i >= bA.Bits {
return false
}
if v {
bA.Elems[i/64] |= (uint64(1) << uint(i%64))
} else {
bA.Elems[i/64] &= ^(uint64(1) << uint(i%64))
}
return true
}
// Copy returns a copy of the provided bit array.
func (bA *BitArray) Copy() *BitArray {
if bA == nil {
return nil
}
bA.mtx.Lock()
defer bA.mtx.Unlock()
return bA.copy()
}
func (bA *BitArray) copy() *BitArray {
c := make([]uint64, len(bA.Elems))
copy(c, bA.Elems)
return &BitArray{
Bits: bA.Bits,
Elems: c,
}
}
func (bA *BitArray) copyBits(bits int) *BitArray {
c := make([]uint64, numElems(bits))
copy(c, bA.Elems)
return &BitArray{
Bits: bits,
Elems: c,
}
}
// Or returns a bit array resulting from a bitwise OR of the two bit arrays.
// If the two bit-arrys have different lengths, Or right-pads the smaller of the two bit-arrays with zeroes.
// Thus the size of the return value is the maximum of the two provided bit arrays.
func (bA *BitArray) Or(o *BitArray) *BitArray {
if bA == nil && o == nil {
return nil
}
if bA == nil && o != nil {
return o.Copy()
}
if o == nil {
return bA.Copy()
}
bA.mtx.Lock()
o.mtx.Lock()
c := bA.copyBits(tmmath.MaxInt(bA.Bits, o.Bits))
smaller := tmmath.MinInt(len(bA.Elems), len(o.Elems))
for i := 0; i < smaller; i++ {
c.Elems[i] |= o.Elems[i]
}
bA.mtx.Unlock()
o.mtx.Unlock()
return c
}
// And returns a bit array resulting from a bitwise AND of the two bit arrays.
// If the two bit-arrys have different lengths, this truncates the larger of the two bit-arrays from the right.
// Thus the size of the return value is the minimum of the two provided bit arrays.
func (bA *BitArray) And(o *BitArray) *BitArray {
if bA == nil || o == nil {
return nil
}
bA.mtx.Lock()
o.mtx.Lock()
defer func() {
bA.mtx.Unlock()
o.mtx.Unlock()
}()
return bA.and(o)
}
func (bA *BitArray) and(o *BitArray) *BitArray {
c := bA.copyBits(tmmath.MinInt(bA.Bits, o.Bits))
for i := 0; i < len(c.Elems); i++ {
c.Elems[i] &= o.Elems[i]
}
return c
}
// Not returns a bit array resulting from a bitwise Not of the provided bit array.
func (bA *BitArray) Not() *BitArray {
if bA == nil {
return nil // Degenerate
}
bA.mtx.Lock()
defer bA.mtx.Unlock()
return bA.not()
}
func (bA *BitArray) not() *BitArray {
c := bA.copy()
for i := 0; i < len(c.Elems); i++ {
c.Elems[i] = ^c.Elems[i]
}
return c
}
// Sub subtracts the two bit-arrays bitwise, without carrying the bits.
// Note that carryless subtraction of a - b is (a and not b).
// The output is the same as bA, regardless of o's size.
// If bA is longer than o, o is right padded with zeroes
func (bA *BitArray) Sub(o *BitArray) *BitArray {
if bA == nil || o == nil {
// TODO: Decide if we should do 1's complement here?
return nil
}
bA.mtx.Lock()
o.mtx.Lock()
// output is the same size as bA
c := bA.copyBits(bA.Bits)
// Only iterate to the minimum size between the two.
// If o is longer, those bits are ignored.
// If bA is longer, then skipping those iterations is equivalent
// to right padding with 0's
smaller := tmmath.MinInt(len(bA.Elems), len(o.Elems))
for i := 0; i < smaller; i++ {
// &^ is and not in golang
c.Elems[i] &^= o.Elems[i]
}
bA.mtx.Unlock()
o.mtx.Unlock()
return c
}
// IsEmpty returns true iff all bits in the bit array are 0
func (bA *BitArray) IsEmpty() bool {
if bA == nil {
return true // should this be opposite?
}
bA.mtx.Lock()
defer bA.mtx.Unlock()
for _, e := range bA.Elems {
if e > 0 {
return false
}
}
return true
}
// IsFull returns true iff all bits in the bit array are 1.
func (bA *BitArray) IsFull() bool {
if bA == nil {
return true
}
bA.mtx.Lock()
defer bA.mtx.Unlock()
// Check all elements except the last
for _, elem := range bA.Elems[:len(bA.Elems)-1] {
if (^elem) != 0 {
return false
}
}
// Check that the last element has (lastElemBits) 1's
lastElemBits := (bA.Bits+63)%64 + 1
lastElem := bA.Elems[len(bA.Elems)-1]
return (lastElem+1)&((uint64(1)<<uint(lastElemBits))-1) == 0
}
// PickRandom returns a random index for a set bit in the bit array.
// If there is no such value, it returns 0, false.
// It uses math/rand's global randomness Source to get this index.
func (bA *BitArray) PickRandom() (int, bool) {
if bA == nil {
return 0, false
}
bA.mtx.Lock()
trueIndices := bA.getTrueIndices()
bA.mtx.Unlock()
if len(trueIndices) == 0 { // no bits set to true
return 0, false
}
// nolint:gosec // G404: Use of weak random number generator
return trueIndices[mrand.Intn(len(trueIndices))], true
}
func (bA *BitArray) getTrueIndices() []int {
trueIndices := make([]int, 0, bA.Bits)
curBit := 0
numElems := len(bA.Elems)
// set all true indices
for i := 0; i < numElems-1; i++ {
elem := bA.Elems[i]
if elem == 0 {
curBit += 64
continue
}
for j := 0; j < 64; j++ {
if (elem & (uint64(1) << uint64(j))) > 0 {
trueIndices = append(trueIndices, curBit)
}
curBit++
}
}
// handle last element
lastElem := bA.Elems[numElems-1]
numFinalBits := bA.Bits - curBit
for i := 0; i < numFinalBits; i++ {
if (lastElem & (uint64(1) << uint64(i))) > 0 {
trueIndices = append(trueIndices, curBit)
}
curBit++
}
return trueIndices
}
// String returns a string representation of BitArray: BA{<bit-string>},
// where <bit-string> is a sequence of 'x' (1) and '_' (0).
// The <bit-string> includes spaces and newlines to help people.
// For a simple sequence of 'x' and '_' characters with no spaces or newlines,
// see the MarshalJSON() method.
// Example: "BA{_x_}" or "nil-BitArray" for nil.
func (bA *BitArray) String() string {
return bA.StringIndented("")
}
// StringIndented returns the same thing as String(), but applies the indent
// at every 10th bit, and twice at every 50th bit.
func (bA *BitArray) StringIndented(indent string) string {
if bA == nil {
return "nil-BitArray"
}
bA.mtx.Lock()
defer bA.mtx.Unlock()
return bA.stringIndented(indent)
}
func (bA *BitArray) stringIndented(indent string) string {
lines := []string{}
bits := ""
for i := 0; i < bA.Bits; i++ {
if bA.getIndex(i) {
bits += "x"
} else {
bits += "_"
}
if i%100 == 99 {
lines = append(lines, bits)
bits = ""
}
if i%10 == 9 {
bits += indent
}
if i%50 == 49 {
bits += indent
}
}
if len(bits) > 0 {
lines = append(lines, bits)
}
return fmt.Sprintf("BA{%v:%v}", bA.Bits, strings.Join(lines, indent))
}
// Bytes returns the byte representation of the bits within the bitarray.
func (bA *BitArray) Bytes() []byte {
bA.mtx.Lock()
defer bA.mtx.Unlock()
numBytes := (bA.Bits + 7) / 8
bytes := make([]byte, numBytes)
for i := 0; i < len(bA.Elems); i++ {
elemBytes := [8]byte{}
binary.LittleEndian.PutUint64(elemBytes[:], bA.Elems[i])
copy(bytes[i*8:], elemBytes[:])
}
return bytes
}
// Update sets the bA's bits to be that of the other bit array.
// The copying begins from the begin of both bit arrays.
func (bA *BitArray) Update(o *BitArray) {
if bA == nil || o == nil {
return
}
bA.mtx.Lock()
o.mtx.Lock()
copy(bA.Elems, o.Elems)
o.mtx.Unlock()
bA.mtx.Unlock()
}
// MarshalJSON implements json.Marshaler interface by marshaling bit array
// using a custom format: a string of '-' or 'x' where 'x' denotes the 1 bit.
func (bA *BitArray) MarshalJSON() ([]byte, error) {
if bA == nil {
return []byte("null"), nil
}
bA.mtx.Lock()
defer bA.mtx.Unlock()
bits := `"`
for i := 0; i < bA.Bits; i++ {
if bA.getIndex(i) {
bits += `x`
} else {
bits += `_`
}
}
bits += `"`
return []byte(bits), nil
}
var bitArrayJSONRegexp = regexp.MustCompile(`\A"([_x]*)"\z`)
// UnmarshalJSON implements json.Unmarshaler interface by unmarshaling a custom
// JSON description.
func (bA *BitArray) UnmarshalJSON(bz []byte) error {
b := string(bz)
if b == "null" {
// This is required e.g. for encoding/json when decoding
// into a pointer with pre-allocated BitArray.
bA.reset(0)
return nil
}
// Validate 'b'.
match := bitArrayJSONRegexp.FindStringSubmatch(b)
if match == nil {
return fmt.Errorf("bitArray in JSON should be a string of format %q but got %s", bitArrayJSONRegexp.String(), b)
}
bits := match[1]
numBits := len(bits)
bA.reset(numBits)
for i := 0; i < numBits; i++ {
if bits[i] == 'x' {
bA.SetIndex(i, true)
}
}
return nil
}
// ToProto converts BitArray to protobuf. It returns nil if BitArray is
// nil/empty.
func (bA *BitArray) ToProto() *tmprotobits.BitArray {
if bA == nil ||
(len(bA.Elems) == 0 && bA.Bits == 0) { // empty
return nil
}
bA.mtx.Lock()
defer bA.mtx.Unlock()
bc := bA.copy()
return &tmprotobits.BitArray{Bits: int64(bc.Bits), Elems: bc.Elems}
}
// FromProto sets BitArray to the given protoBitArray. It returns an error if
// protoBitArray is invalid.
func (bA *BitArray) FromProto(protoBitArray *tmprotobits.BitArray) error {
if protoBitArray == nil {
return nil
}
// Validate protoBitArray.
if protoBitArray.Bits < 0 {
return errors.New("negative Bits")
}
// #[32bit]
if protoBitArray.Bits > math.MaxInt32 { // prevent overflow on 32bit systems
return errors.New("too many Bits")
}
if got, exp := len(protoBitArray.Elems), numElems(int(protoBitArray.Bits)); got != exp {
return fmt.Errorf("invalid number of Elems: got %d, but exp %d", got, exp)
}
bA.mtx.Lock()
defer bA.mtx.Unlock()
ec := make([]uint64, len(protoBitArray.Elems))
copy(ec, protoBitArray.Elems)
bA.Bits = int(protoBitArray.Bits)
bA.Elems = ec
return nil
}
func numElems(bits int) int {
return (bits + 63) / 64
}