package p2p
|
|
|
|
import (
|
|
"context"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"math/rand"
|
|
"net"
|
|
"runtime"
|
|
"sync"
|
|
"time"
|
|
|
|
"github.com/gogo/protobuf/proto"
|
|
|
|
"github.com/tendermint/tendermint/crypto"
|
|
"github.com/tendermint/tendermint/libs/log"
|
|
"github.com/tendermint/tendermint/libs/service"
|
|
"github.com/tendermint/tendermint/types"
|
|
)
|
|
|
|
const queueBufferDefault = 32
|
|
|
|
// Envelope contains a message with sender/receiver routing info.
|
|
type Envelope struct {
|
|
From types.NodeID // sender (empty if outbound)
|
|
To types.NodeID // receiver (empty if inbound)
|
|
Broadcast bool // send to all connected peers (ignores To)
|
|
Message proto.Message // message payload
|
|
|
|
// channelID is for internal Router use, set on outbound messages to inform
|
|
// the sendPeer() goroutine which transport channel to use.
|
|
//
|
|
// FIXME: If we migrate the Transport API to a byte-oriented multi-stream
|
|
// API, this will no longer be necessary since each channel will be mapped
|
|
// onto a stream during channel/peer setup. See:
|
|
// https://github.com/tendermint/spec/pull/227
|
|
channelID ChannelID
|
|
}
|
|
|
|
// PeerError is a peer error reported via Channel.Error.
|
|
//
|
|
// FIXME: This currently just disconnects the peer, which is too simplistic.
|
|
// For example, some errors should be logged, some should cause disconnects,
|
|
// and some should ban the peer.
|
|
//
|
|
// FIXME: This should probably be replaced by a more general PeerBehavior
|
|
// concept that can mark good and bad behavior and contributes to peer scoring.
|
|
// It should possibly also allow reactors to request explicit actions, e.g.
|
|
// disconnection or banning, in addition to doing this based on aggregates.
|
|
type PeerError struct {
|
|
NodeID types.NodeID
|
|
Err error
|
|
}
|
|
|
|
// Channel is a bidirectional channel to exchange Protobuf messages with peers,
|
|
// wrapped in Envelope to specify routing info (i.e. sender/receiver).
|
|
type Channel struct {
|
|
ID ChannelID
|
|
In <-chan Envelope // inbound messages (peers to reactors)
|
|
Out chan<- Envelope // outbound messages (reactors to peers)
|
|
Error chan<- PeerError // peer error reporting
|
|
|
|
messageType proto.Message // the channel's message type, used for unmarshaling
|
|
closeCh chan struct{}
|
|
closeOnce sync.Once
|
|
}
|
|
|
|
// NewChannel creates a new channel. It is primarily for internal and test
|
|
// use, reactors should use Router.OpenChannel().
|
|
func NewChannel(
|
|
id ChannelID,
|
|
messageType proto.Message,
|
|
inCh <-chan Envelope,
|
|
outCh chan<- Envelope,
|
|
errCh chan<- PeerError,
|
|
) *Channel {
|
|
return &Channel{
|
|
ID: id,
|
|
messageType: messageType,
|
|
In: inCh,
|
|
Out: outCh,
|
|
Error: errCh,
|
|
closeCh: make(chan struct{}),
|
|
}
|
|
}
|
|
|
|
// Close closes the channel. Future sends on Out and Error will panic. The In
|
|
// channel remains open to avoid having to synchronize Router senders, which
|
|
// should use Done() to detect channel closure instead.
|
|
func (c *Channel) Close() {
|
|
c.closeOnce.Do(func() {
|
|
close(c.closeCh)
|
|
close(c.Out)
|
|
close(c.Error)
|
|
})
|
|
}
|
|
|
|
// Done returns a channel that's closed when Channel.Close() is called.
|
|
func (c *Channel) Done() <-chan struct{} {
|
|
return c.closeCh
|
|
}
|
|
|
|
// Wrapper is a Protobuf message that can contain a variety of inner messages
|
|
// (e.g. via oneof fields). If a Channel's message type implements Wrapper, the
|
|
// Router will automatically wrap outbound messages and unwrap inbound messages,
|
|
// such that reactors do not have to do this themselves.
|
|
type Wrapper interface {
|
|
proto.Message
|
|
|
|
// Wrap will take a message and wrap it in this one if possible.
|
|
Wrap(proto.Message) error
|
|
|
|
// Unwrap will unwrap the inner message contained in this message.
|
|
Unwrap() (proto.Message, error)
|
|
}
|
|
|
|
// RouterOptions specifies options for a Router.
|
|
type RouterOptions struct {
|
|
// ResolveTimeout is the timeout for resolving NodeAddress URLs.
|
|
// 0 means no timeout.
|
|
ResolveTimeout time.Duration
|
|
|
|
// DialTimeout is the timeout for dialing a peer. 0 means no timeout.
|
|
DialTimeout time.Duration
|
|
|
|
// HandshakeTimeout is the timeout for handshaking with a peer. 0 means
|
|
// no timeout.
|
|
HandshakeTimeout time.Duration
|
|
|
|
// QueueType must be, "priority", or "fifo". Defaults to
|
|
// "fifo".
|
|
QueueType string
|
|
|
|
// MaxIncomingConnectionAttempts rate limits the number of incoming connection
|
|
// attempts per IP address. Defaults to 100.
|
|
MaxIncomingConnectionAttempts uint
|
|
|
|
// IncomingConnectionWindow describes how often an IP address
|
|
// can attempt to create a new connection. Defaults to 10
|
|
// milliseconds, and cannot be less than 1 millisecond.
|
|
IncomingConnectionWindow time.Duration
|
|
|
|
// FilterPeerByIP is used by the router to inject filtering
|
|
// behavior for new incoming connections. The router passes
|
|
// the remote IP of the incoming connection the port number as
|
|
// arguments. Functions should return an error to reject the
|
|
// peer.
|
|
FilterPeerByIP func(context.Context, net.IP, uint16) error
|
|
|
|
// FilterPeerByID is used by the router to inject filtering
|
|
// behavior for new incoming connections. The router passes
|
|
// the NodeID of the node before completing the connection,
|
|
// but this occurs after the handshake is complete. Filter by
|
|
// IP address to filter before the handshake. Functions should
|
|
// return an error to reject the peer.
|
|
FilterPeerByID func(context.Context, types.NodeID) error
|
|
|
|
// DialSleep controls the amount of time that the router
|
|
// sleeps between dialing peers. If not set, a default value
|
|
// is used that sleeps for a (random) amount of time up to 3
|
|
// seconds between submitting each peer to be dialed.
|
|
DialSleep func(context.Context)
|
|
|
|
// NumConcrruentDials controls how many parallel go routines
|
|
// are used to dial peers. This defaults to the value of
|
|
// runtime.NumCPU.
|
|
NumConcurrentDials func() int
|
|
}
|
|
|
|
const (
|
|
queueTypeFifo = "fifo"
|
|
queueTypePriority = "priority"
|
|
)
|
|
|
|
// Validate validates router options.
|
|
func (o *RouterOptions) Validate() error {
|
|
switch o.QueueType {
|
|
case "":
|
|
o.QueueType = queueTypeFifo
|
|
case queueTypeFifo, queueTypePriority:
|
|
// pass
|
|
default:
|
|
return fmt.Errorf("queue type %q is not supported", o.QueueType)
|
|
}
|
|
|
|
switch {
|
|
case o.IncomingConnectionWindow == 0:
|
|
o.IncomingConnectionWindow = 100 * time.Millisecond
|
|
case o.IncomingConnectionWindow < time.Millisecond:
|
|
return fmt.Errorf("incomming connection window must be grater than 1m [%s]",
|
|
o.IncomingConnectionWindow)
|
|
}
|
|
|
|
if o.MaxIncomingConnectionAttempts == 0 {
|
|
o.MaxIncomingConnectionAttempts = 100
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// Router manages peer connections and routes messages between peers and reactor
|
|
// channels. It takes a PeerManager for peer lifecycle management (e.g. which
|
|
// peers to dial and when) and a set of Transports for connecting and
|
|
// communicating with peers.
|
|
//
|
|
// On startup, three main goroutines are spawned to maintain peer connections:
|
|
//
|
|
// dialPeers(): in a loop, calls PeerManager.DialNext() to get the next peer
|
|
// address to dial and spawns a goroutine that dials the peer, handshakes
|
|
// with it, and begins to route messages if successful.
|
|
//
|
|
// acceptPeers(): in a loop, waits for an inbound connection via
|
|
// Transport.Accept() and spawns a goroutine that handshakes with it and
|
|
// begins to route messages if successful.
|
|
//
|
|
// evictPeers(): in a loop, calls PeerManager.EvictNext() to get the next
|
|
// peer to evict, and disconnects it by closing its message queue.
|
|
//
|
|
// When a peer is connected, an outbound peer message queue is registered in
|
|
// peerQueues, and routePeer() is called to spawn off two additional goroutines:
|
|
//
|
|
// sendPeer(): waits for an outbound message from the peerQueues queue,
|
|
// marshals it, and passes it to the peer transport which delivers it.
|
|
//
|
|
// receivePeer(): waits for an inbound message from the peer transport,
|
|
// unmarshals it, and passes it to the appropriate inbound channel queue
|
|
// in channelQueues.
|
|
//
|
|
// When a reactor opens a channel via OpenChannel, an inbound channel message
|
|
// queue is registered in channelQueues, and a channel goroutine is spawned:
|
|
//
|
|
// routeChannel(): waits for an outbound message from the channel, looks
|
|
// up the recipient peer's outbound message queue in peerQueues, and submits
|
|
// the message to it.
|
|
//
|
|
// All channel sends in the router are blocking. It is the responsibility of the
|
|
// queue interface in peerQueues and channelQueues to prioritize and drop
|
|
// messages as appropriate during contention to prevent stalls and ensure good
|
|
// quality of service.
|
|
type Router struct {
|
|
*service.BaseService
|
|
|
|
logger log.Logger
|
|
metrics *Metrics
|
|
options RouterOptions
|
|
nodeInfo types.NodeInfo
|
|
privKey crypto.PrivKey
|
|
peerManager *PeerManager
|
|
chDescs []*ChannelDescriptor
|
|
transports []Transport
|
|
connTracker connectionTracker
|
|
protocolTransports map[Protocol]Transport
|
|
stopCh chan struct{} // signals Router shutdown
|
|
|
|
peerMtx sync.RWMutex
|
|
peerQueues map[types.NodeID]queue // outbound messages per peer for all channels
|
|
// the channels that the peer queue has open
|
|
peerChannels map[types.NodeID]channelIDs
|
|
queueFactory func(int) queue
|
|
|
|
// FIXME: We don't strictly need to use a mutex for this if we seal the
|
|
// channels on router start. This depends on whether we want to allow
|
|
// dynamic channels in the future.
|
|
channelMtx sync.RWMutex
|
|
channelQueues map[ChannelID]queue // inbound messages from all peers to a single channel
|
|
channelMessages map[ChannelID]proto.Message
|
|
}
|
|
|
|
// NewRouter creates a new Router. The given Transports must already be
|
|
// listening on appropriate interfaces, and will be closed by the Router when it
|
|
// stops.
|
|
func NewRouter(
|
|
logger log.Logger,
|
|
metrics *Metrics,
|
|
nodeInfo types.NodeInfo,
|
|
privKey crypto.PrivKey,
|
|
peerManager *PeerManager,
|
|
transports []Transport,
|
|
options RouterOptions,
|
|
) (*Router, error) {
|
|
|
|
if err := options.Validate(); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
router := &Router{
|
|
logger: logger,
|
|
metrics: metrics,
|
|
nodeInfo: nodeInfo,
|
|
privKey: privKey,
|
|
connTracker: newConnTracker(
|
|
options.MaxIncomingConnectionAttempts,
|
|
options.IncomingConnectionWindow,
|
|
),
|
|
chDescs: make([]*ChannelDescriptor, 0),
|
|
transports: transports,
|
|
protocolTransports: map[Protocol]Transport{},
|
|
peerManager: peerManager,
|
|
options: options,
|
|
stopCh: make(chan struct{}),
|
|
channelQueues: map[ChannelID]queue{},
|
|
channelMessages: map[ChannelID]proto.Message{},
|
|
peerQueues: map[types.NodeID]queue{},
|
|
peerChannels: make(map[types.NodeID]channelIDs),
|
|
}
|
|
|
|
router.BaseService = service.NewBaseService(logger, "router", router)
|
|
|
|
qf, err := router.createQueueFactory()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
router.queueFactory = qf
|
|
|
|
for _, transport := range transports {
|
|
for _, protocol := range transport.Protocols() {
|
|
if _, ok := router.protocolTransports[protocol]; !ok {
|
|
router.protocolTransports[protocol] = transport
|
|
}
|
|
}
|
|
}
|
|
|
|
return router, nil
|
|
}
|
|
|
|
func (r *Router) createQueueFactory() (func(int) queue, error) {
|
|
switch r.options.QueueType {
|
|
case queueTypeFifo:
|
|
return newFIFOQueue, nil
|
|
|
|
case queueTypePriority:
|
|
return func(size int) queue {
|
|
if size%2 != 0 {
|
|
size++
|
|
}
|
|
|
|
q := newPQScheduler(r.logger, r.metrics, r.chDescs, uint(size)/2, uint(size)/2, defaultCapacity)
|
|
q.start()
|
|
return q
|
|
}, nil
|
|
|
|
default:
|
|
return nil, fmt.Errorf("cannot construct queue of type %q", r.options.QueueType)
|
|
}
|
|
}
|
|
|
|
// OpenChannel opens a new channel for the given message type. The caller must
|
|
// close the channel when done, before stopping the Router. messageType is the
|
|
// type of message passed through the channel (used for unmarshaling), which can
|
|
// implement Wrapper to automatically (un)wrap multiple message types in a
|
|
// wrapper message. The caller may provide a size to make the channel buffered,
|
|
// which internally makes the inbound, outbound, and error channel buffered.
|
|
func (r *Router) OpenChannel(chDesc *ChannelDescriptor) (*Channel, error) {
|
|
r.channelMtx.Lock()
|
|
defer r.channelMtx.Unlock()
|
|
|
|
id := chDesc.ID
|
|
if _, ok := r.channelQueues[id]; ok {
|
|
return nil, fmt.Errorf("channel %v already exists", id)
|
|
}
|
|
r.chDescs = append(r.chDescs, chDesc)
|
|
|
|
messageType := chDesc.MessageType
|
|
|
|
queue := r.queueFactory(chDesc.RecvBufferCapacity)
|
|
outCh := make(chan Envelope, chDesc.RecvBufferCapacity)
|
|
errCh := make(chan PeerError, chDesc.RecvBufferCapacity)
|
|
channel := NewChannel(id, messageType, queue.dequeue(), outCh, errCh)
|
|
|
|
var wrapper Wrapper
|
|
if w, ok := messageType.(Wrapper); ok {
|
|
wrapper = w
|
|
}
|
|
|
|
r.channelQueues[id] = queue
|
|
r.channelMessages[id] = messageType
|
|
|
|
// add the channel to the nodeInfo if it's not already there.
|
|
r.nodeInfo.AddChannel(uint16(chDesc.ID))
|
|
|
|
for _, t := range r.transports {
|
|
t.AddChannelDescriptors([]*ChannelDescriptor{chDesc})
|
|
}
|
|
|
|
go func() {
|
|
defer func() {
|
|
r.channelMtx.Lock()
|
|
delete(r.channelQueues, id)
|
|
delete(r.channelMessages, id)
|
|
r.channelMtx.Unlock()
|
|
queue.close()
|
|
}()
|
|
|
|
r.routeChannel(id, outCh, errCh, wrapper)
|
|
}()
|
|
|
|
return channel, nil
|
|
}
|
|
|
|
// routeChannel receives outbound channel messages and routes them to the
|
|
// appropriate peer. It also receives peer errors and reports them to the peer
|
|
// manager. It returns when either the outbound channel or error channel is
|
|
// closed, or the Router is stopped. wrapper is an optional message wrapper
|
|
// for messages, see Wrapper for details.
|
|
func (r *Router) routeChannel(
|
|
chID ChannelID,
|
|
outCh <-chan Envelope,
|
|
errCh <-chan PeerError,
|
|
wrapper Wrapper,
|
|
) {
|
|
for {
|
|
select {
|
|
case envelope, ok := <-outCh:
|
|
if !ok {
|
|
return
|
|
}
|
|
|
|
// Mark the envelope with the channel ID to allow sendPeer() to pass
|
|
// it on to Transport.SendMessage().
|
|
envelope.channelID = chID
|
|
|
|
// wrap the message in a wrapper message, if requested
|
|
if wrapper != nil {
|
|
msg := proto.Clone(wrapper)
|
|
if err := msg.(Wrapper).Wrap(envelope.Message); err != nil {
|
|
r.Logger.Error("failed to wrap message", "channel", chID, "err", err)
|
|
continue
|
|
}
|
|
|
|
envelope.Message = msg
|
|
}
|
|
|
|
// collect peer queues to pass the message via
|
|
var queues []queue
|
|
if envelope.Broadcast {
|
|
r.peerMtx.RLock()
|
|
|
|
queues = make([]queue, 0, len(r.peerQueues))
|
|
for nodeID, q := range r.peerQueues {
|
|
peerChs := r.peerChannels[nodeID]
|
|
|
|
// check whether the peer is receiving on that channel
|
|
if _, ok := peerChs[chID]; ok {
|
|
queues = append(queues, q)
|
|
}
|
|
}
|
|
|
|
r.peerMtx.RUnlock()
|
|
} else {
|
|
r.peerMtx.RLock()
|
|
|
|
q, ok := r.peerQueues[envelope.To]
|
|
contains := false
|
|
if ok {
|
|
peerChs := r.peerChannels[envelope.To]
|
|
|
|
// check whether the peer is receiving on that channel
|
|
_, contains = peerChs[chID]
|
|
}
|
|
r.peerMtx.RUnlock()
|
|
|
|
if !ok {
|
|
r.logger.Debug("dropping message for unconnected peer", "peer", envelope.To, "channel", chID)
|
|
continue
|
|
}
|
|
|
|
if !contains {
|
|
// reactor tried to send a message across a channel that the
|
|
// peer doesn't have available. This is a known issue due to
|
|
// how peer subscriptions work:
|
|
// https://github.com/tendermint/tendermint/issues/6598
|
|
continue
|
|
}
|
|
|
|
queues = []queue{q}
|
|
}
|
|
|
|
// send message to peers
|
|
for _, q := range queues {
|
|
start := time.Now().UTC()
|
|
|
|
select {
|
|
case q.enqueue() <- envelope:
|
|
r.metrics.RouterPeerQueueSend.Observe(time.Since(start).Seconds())
|
|
|
|
case <-q.closed():
|
|
r.logger.Debug("dropping message for unconnected peer", "peer", envelope.To, "channel", chID)
|
|
|
|
case <-r.stopCh:
|
|
return
|
|
}
|
|
}
|
|
|
|
case peerError, ok := <-errCh:
|
|
if !ok {
|
|
return
|
|
}
|
|
|
|
r.logger.Error("peer error, evicting", "peer", peerError.NodeID, "err", peerError.Err)
|
|
|
|
r.peerManager.Errored(peerError.NodeID, peerError.Err)
|
|
|
|
case <-r.stopCh:
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
func (r *Router) numConccurentDials() int {
|
|
if r.options.NumConcurrentDials == nil {
|
|
return runtime.NumCPU()
|
|
}
|
|
|
|
return r.options.NumConcurrentDials()
|
|
}
|
|
|
|
func (r *Router) filterPeersIP(ctx context.Context, ip net.IP, port uint16) error {
|
|
if r.options.FilterPeerByIP == nil {
|
|
return nil
|
|
}
|
|
|
|
return r.options.FilterPeerByIP(ctx, ip, port)
|
|
}
|
|
|
|
func (r *Router) filterPeersID(ctx context.Context, id types.NodeID) error {
|
|
if r.options.FilterPeerByID == nil {
|
|
return nil
|
|
}
|
|
|
|
return r.options.FilterPeerByID(ctx, id)
|
|
}
|
|
|
|
func (r *Router) dialSleep(ctx context.Context) {
|
|
if r.options.DialSleep == nil {
|
|
const (
|
|
maxDialerInterval = 3000
|
|
minDialerInterval = 250
|
|
)
|
|
|
|
// nolint:gosec // G404: Use of weak random number generator
|
|
dur := time.Duration(rand.Int63n(maxDialerInterval-minDialerInterval+1) + minDialerInterval)
|
|
|
|
timer := time.NewTimer(dur * time.Millisecond)
|
|
defer timer.Stop()
|
|
|
|
select {
|
|
case <-ctx.Done():
|
|
case <-timer.C:
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
r.options.DialSleep(ctx)
|
|
}
|
|
|
|
// acceptPeers accepts inbound connections from peers on the given transport,
|
|
// and spawns goroutines that route messages to/from them.
|
|
func (r *Router) acceptPeers(transport Transport) {
|
|
r.logger.Debug("starting accept routine", "transport", transport)
|
|
ctx := r.stopCtx()
|
|
for {
|
|
conn, err := transport.Accept()
|
|
switch err {
|
|
case nil:
|
|
case io.EOF:
|
|
r.logger.Debug("stopping accept routine", "transport", transport)
|
|
return
|
|
default:
|
|
r.logger.Error("failed to accept connection", "transport", transport, "err", err)
|
|
return
|
|
}
|
|
|
|
incomingIP := conn.RemoteEndpoint().IP
|
|
if err := r.connTracker.AddConn(incomingIP); err != nil {
|
|
closeErr := conn.Close()
|
|
r.logger.Debug("rate limiting incoming peer",
|
|
"err", err,
|
|
"ip", incomingIP.String(),
|
|
"close_err", closeErr,
|
|
)
|
|
|
|
return
|
|
}
|
|
|
|
// Spawn a goroutine for the handshake, to avoid head-of-line blocking.
|
|
go r.openConnection(ctx, conn)
|
|
|
|
}
|
|
}
|
|
|
|
func (r *Router) openConnection(ctx context.Context, conn Connection) {
|
|
defer conn.Close()
|
|
defer r.connTracker.RemoveConn(conn.RemoteEndpoint().IP)
|
|
|
|
re := conn.RemoteEndpoint()
|
|
incomingIP := re.IP
|
|
|
|
if err := r.filterPeersIP(ctx, incomingIP, re.Port); err != nil {
|
|
r.logger.Debug("peer filtered by IP", "ip", incomingIP.String(), "err", err)
|
|
return
|
|
}
|
|
|
|
// FIXME: The peer manager may reject the peer during Accepted()
|
|
// after we've handshaked with the peer (to find out which peer it
|
|
// is). However, because the handshake has no ack, the remote peer
|
|
// will think the handshake was successful and start sending us
|
|
// messages.
|
|
//
|
|
// This can cause problems in tests, where a disconnection can cause
|
|
// the local node to immediately redial, while the remote node may
|
|
// not have completed the disconnection yet and therefore reject the
|
|
// reconnection attempt (since it thinks we're still connected from
|
|
// before).
|
|
//
|
|
// The Router should do the handshake and have a final ack/fail
|
|
// message to make sure both ends have accepted the connection, such
|
|
// that it can be coordinated with the peer manager.
|
|
peerInfo, err := r.handshakePeer(ctx, conn, "")
|
|
switch {
|
|
case errors.Is(err, context.Canceled):
|
|
return
|
|
case err != nil:
|
|
r.logger.Error("peer handshake failed", "endpoint", conn, "err", err)
|
|
return
|
|
}
|
|
if err := r.filterPeersID(ctx, peerInfo.NodeID); err != nil {
|
|
r.logger.Debug("peer filtered by node ID", "node", peerInfo.NodeID, "err", err)
|
|
return
|
|
}
|
|
|
|
if err := r.runWithPeerMutex(func() error { return r.peerManager.Accepted(peerInfo.NodeID) }); err != nil {
|
|
r.logger.Error("failed to accept connection",
|
|
"op", "incoming/accepted", "peer", peerInfo.NodeID, "err", err)
|
|
return
|
|
}
|
|
|
|
r.routePeer(peerInfo.NodeID, conn, toChannelIDs(peerInfo.Channels))
|
|
}
|
|
|
|
// dialPeers maintains outbound connections to peers by dialing them.
|
|
func (r *Router) dialPeers() {
|
|
r.logger.Debug("starting dial routine")
|
|
ctx := r.stopCtx()
|
|
|
|
addresses := make(chan NodeAddress)
|
|
wg := &sync.WaitGroup{}
|
|
|
|
// Start a limited number of goroutines to dial peers in
|
|
// parallel. the goal is to avoid starting an unbounded number
|
|
// of goroutines thereby spamming the network, but also being
|
|
// able to add peers at a reasonable pace, though the number
|
|
// is somewhat arbitrary. The action is further throttled by a
|
|
// sleep after sending to the addresses channel.
|
|
for i := 0; i < r.numConccurentDials(); i++ {
|
|
wg.Add(1)
|
|
go func() {
|
|
defer wg.Done()
|
|
|
|
for {
|
|
select {
|
|
case <-ctx.Done():
|
|
return
|
|
case address := <-addresses:
|
|
r.connectPeer(ctx, address)
|
|
}
|
|
}
|
|
}()
|
|
}
|
|
|
|
LOOP:
|
|
for {
|
|
address, err := r.peerManager.DialNext(ctx)
|
|
switch {
|
|
case errors.Is(err, context.Canceled):
|
|
r.logger.Debug("stopping dial routine")
|
|
break LOOP
|
|
case err != nil:
|
|
r.logger.Error("failed to find next peer to dial", "err", err)
|
|
break LOOP
|
|
}
|
|
|
|
select {
|
|
case addresses <- address:
|
|
// this jitters the frequency that we call
|
|
// DialNext and prevents us from attempting to
|
|
// create connections too quickly.
|
|
|
|
r.dialSleep(ctx)
|
|
continue
|
|
case <-ctx.Done():
|
|
close(addresses)
|
|
break LOOP
|
|
}
|
|
}
|
|
|
|
wg.Wait()
|
|
}
|
|
|
|
func (r *Router) connectPeer(ctx context.Context, address NodeAddress) {
|
|
conn, err := r.dialPeer(ctx, address)
|
|
switch {
|
|
case errors.Is(err, context.Canceled):
|
|
return
|
|
case err != nil:
|
|
r.logger.Error("failed to dial peer", "peer", address, "err", err)
|
|
if err = r.peerManager.DialFailed(address); err != nil {
|
|
r.logger.Error("failed to report dial failure", "peer", address, "err", err)
|
|
}
|
|
return
|
|
}
|
|
|
|
peerInfo, err := r.handshakePeer(ctx, conn, address.NodeID)
|
|
switch {
|
|
case errors.Is(err, context.Canceled):
|
|
conn.Close()
|
|
return
|
|
case err != nil:
|
|
r.logger.Error("failed to handshake with peer", "peer", address, "err", err)
|
|
if err = r.peerManager.DialFailed(address); err != nil {
|
|
r.logger.Error("failed to report dial failure", "peer", address, "err", err)
|
|
}
|
|
conn.Close()
|
|
return
|
|
}
|
|
|
|
if err := r.runWithPeerMutex(func() error { return r.peerManager.Dialed(address) }); err != nil {
|
|
r.logger.Error("failed to dial peer",
|
|
"op", "outgoing/dialing", "peer", address.NodeID, "err", err)
|
|
conn.Close()
|
|
return
|
|
}
|
|
|
|
// routePeer (also) calls connection close
|
|
go r.routePeer(address.NodeID, conn, toChannelIDs(peerInfo.Channels))
|
|
}
|
|
|
|
func (r *Router) getOrMakeQueue(peerID types.NodeID, channels channelIDs) queue {
|
|
r.peerMtx.Lock()
|
|
defer r.peerMtx.Unlock()
|
|
|
|
if peerQueue, ok := r.peerQueues[peerID]; ok {
|
|
return peerQueue
|
|
}
|
|
|
|
peerQueue := r.queueFactory(queueBufferDefault)
|
|
r.peerQueues[peerID] = peerQueue
|
|
r.peerChannels[peerID] = channels
|
|
return peerQueue
|
|
}
|
|
|
|
// dialPeer connects to a peer by dialing it.
|
|
func (r *Router) dialPeer(ctx context.Context, address NodeAddress) (Connection, error) {
|
|
resolveCtx := ctx
|
|
if r.options.ResolveTimeout > 0 {
|
|
var cancel context.CancelFunc
|
|
resolveCtx, cancel = context.WithTimeout(resolveCtx, r.options.ResolveTimeout)
|
|
defer cancel()
|
|
}
|
|
|
|
r.logger.Debug("resolving peer address", "peer", address)
|
|
endpoints, err := address.Resolve(resolveCtx)
|
|
switch {
|
|
case err != nil:
|
|
return nil, fmt.Errorf("failed to resolve address %q: %w", address, err)
|
|
case len(endpoints) == 0:
|
|
return nil, fmt.Errorf("address %q did not resolve to any endpoints", address)
|
|
}
|
|
|
|
for _, endpoint := range endpoints {
|
|
transport, ok := r.protocolTransports[endpoint.Protocol]
|
|
if !ok {
|
|
r.logger.Error("no transport found for protocol", "endpoint", endpoint)
|
|
continue
|
|
}
|
|
|
|
dialCtx := ctx
|
|
if r.options.DialTimeout > 0 {
|
|
var cancel context.CancelFunc
|
|
dialCtx, cancel = context.WithTimeout(dialCtx, r.options.DialTimeout)
|
|
defer cancel()
|
|
}
|
|
|
|
// FIXME: When we dial and handshake the peer, we should pass it
|
|
// appropriate address(es) it can use to dial us back. It can't use our
|
|
// remote endpoint, since TCP uses different port numbers for outbound
|
|
// connections than it does for inbound. Also, we may need to vary this
|
|
// by the peer's endpoint, since e.g. a peer on 192.168.0.0 can reach us
|
|
// on a private address on this endpoint, but a peer on the public
|
|
// Internet can't and needs a different public address.
|
|
conn, err := transport.Dial(dialCtx, endpoint)
|
|
if err != nil {
|
|
r.logger.Error("failed to dial endpoint", "peer", address.NodeID, "endpoint", endpoint, "err", err)
|
|
} else {
|
|
r.logger.Debug("dialed peer", "peer", address.NodeID, "endpoint", endpoint)
|
|
return conn, nil
|
|
}
|
|
}
|
|
return nil, errors.New("all endpoints failed")
|
|
}
|
|
|
|
// handshakePeer handshakes with a peer, validating the peer's information. If
|
|
// expectID is given, we check that the peer's info matches it.
|
|
func (r *Router) handshakePeer(
|
|
ctx context.Context,
|
|
conn Connection,
|
|
expectID types.NodeID,
|
|
) (types.NodeInfo, error) {
|
|
|
|
if r.options.HandshakeTimeout > 0 {
|
|
var cancel context.CancelFunc
|
|
ctx, cancel = context.WithTimeout(ctx, r.options.HandshakeTimeout)
|
|
defer cancel()
|
|
}
|
|
|
|
peerInfo, peerKey, err := conn.Handshake(ctx, r.nodeInfo, r.privKey)
|
|
if err != nil {
|
|
return peerInfo, err
|
|
}
|
|
if err = peerInfo.Validate(); err != nil {
|
|
return peerInfo, fmt.Errorf("invalid handshake NodeInfo: %w", err)
|
|
}
|
|
if types.NodeIDFromPubKey(peerKey) != peerInfo.NodeID {
|
|
return peerInfo, fmt.Errorf("peer's public key did not match its node ID %q (expected %q)",
|
|
peerInfo.NodeID, types.NodeIDFromPubKey(peerKey))
|
|
}
|
|
if expectID != "" && expectID != peerInfo.NodeID {
|
|
return peerInfo, fmt.Errorf("expected to connect with peer %q, got %q",
|
|
expectID, peerInfo.NodeID)
|
|
}
|
|
if err := r.nodeInfo.CompatibleWith(peerInfo); err != nil {
|
|
return peerInfo, ErrRejected{
|
|
err: err,
|
|
id: peerInfo.ID(),
|
|
isIncompatible: true,
|
|
}
|
|
}
|
|
return peerInfo, nil
|
|
}
|
|
|
|
func (r *Router) runWithPeerMutex(fn func() error) error {
|
|
r.peerMtx.Lock()
|
|
defer r.peerMtx.Unlock()
|
|
return fn()
|
|
}
|
|
|
|
// routePeer routes inbound and outbound messages between a peer and the reactor
|
|
// channels. It will close the given connection and send queue when done, or if
|
|
// they are closed elsewhere it will cause this method to shut down and return.
|
|
func (r *Router) routePeer(peerID types.NodeID, conn Connection, channels channelIDs) {
|
|
r.metrics.Peers.Add(1)
|
|
r.peerManager.Ready(peerID)
|
|
|
|
sendQueue := r.getOrMakeQueue(peerID, channels)
|
|
defer func() {
|
|
r.peerMtx.Lock()
|
|
delete(r.peerQueues, peerID)
|
|
delete(r.peerChannels, peerID)
|
|
r.peerMtx.Unlock()
|
|
|
|
sendQueue.close()
|
|
|
|
r.peerManager.Disconnected(peerID)
|
|
r.metrics.Peers.Add(-1)
|
|
}()
|
|
|
|
r.logger.Info("peer connected", "peer", peerID, "endpoint", conn)
|
|
|
|
errCh := make(chan error, 2)
|
|
|
|
go func() {
|
|
errCh <- r.receivePeer(peerID, conn)
|
|
}()
|
|
|
|
go func() {
|
|
errCh <- r.sendPeer(peerID, conn, sendQueue)
|
|
}()
|
|
|
|
err := <-errCh
|
|
_ = conn.Close()
|
|
sendQueue.close()
|
|
|
|
if e := <-errCh; err == nil {
|
|
// The first err was nil, so we update it with the second err, which may
|
|
// or may not be nil.
|
|
err = e
|
|
}
|
|
|
|
switch err {
|
|
case nil, io.EOF:
|
|
r.logger.Info("peer disconnected", "peer", peerID, "endpoint", conn)
|
|
|
|
default:
|
|
r.logger.Error("peer failure", "peer", peerID, "endpoint", conn, "err", err)
|
|
}
|
|
}
|
|
|
|
// receivePeer receives inbound messages from a peer, deserializes them and
|
|
// passes them on to the appropriate channel.
|
|
func (r *Router) receivePeer(peerID types.NodeID, conn Connection) error {
|
|
for {
|
|
chID, bz, err := conn.ReceiveMessage()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
r.channelMtx.RLock()
|
|
queue, ok := r.channelQueues[chID]
|
|
messageType := r.channelMessages[chID]
|
|
r.channelMtx.RUnlock()
|
|
|
|
if !ok {
|
|
r.logger.Debug("dropping message for unknown channel", "peer", peerID, "channel", chID)
|
|
continue
|
|
}
|
|
|
|
msg := proto.Clone(messageType)
|
|
if err := proto.Unmarshal(bz, msg); err != nil {
|
|
r.logger.Error("message decoding failed, dropping message", "peer", peerID, "err", err)
|
|
continue
|
|
}
|
|
|
|
if wrapper, ok := msg.(Wrapper); ok {
|
|
msg, err = wrapper.Unwrap()
|
|
if err != nil {
|
|
r.logger.Error("failed to unwrap message", "err", err)
|
|
continue
|
|
}
|
|
}
|
|
|
|
start := time.Now().UTC()
|
|
|
|
select {
|
|
case queue.enqueue() <- Envelope{From: peerID, Message: msg}:
|
|
r.metrics.PeerReceiveBytesTotal.With(
|
|
"chID", fmt.Sprint(chID),
|
|
"peer_id", string(peerID),
|
|
"message_type", r.metrics.ValueToMetricLabel(msg)).Add(float64(proto.Size(msg)))
|
|
r.metrics.RouterChannelQueueSend.Observe(time.Since(start).Seconds())
|
|
r.logger.Debug("received message", "peer", peerID, "message", msg)
|
|
|
|
case <-queue.closed():
|
|
r.logger.Debug("channel closed, dropping message", "peer", peerID, "channel", chID)
|
|
|
|
case <-r.stopCh:
|
|
return nil
|
|
}
|
|
}
|
|
}
|
|
|
|
// sendPeer sends queued messages to a peer.
|
|
func (r *Router) sendPeer(peerID types.NodeID, conn Connection, peerQueue queue) error {
|
|
for {
|
|
start := time.Now().UTC()
|
|
|
|
select {
|
|
case envelope := <-peerQueue.dequeue():
|
|
r.metrics.RouterPeerQueueRecv.Observe(time.Since(start).Seconds())
|
|
if envelope.Message == nil {
|
|
r.logger.Error("dropping nil message", "peer", peerID)
|
|
continue
|
|
}
|
|
|
|
bz, err := proto.Marshal(envelope.Message)
|
|
if err != nil {
|
|
r.logger.Error("failed to marshal message", "peer", peerID, "err", err)
|
|
continue
|
|
}
|
|
|
|
if err = conn.SendMessage(envelope.channelID, bz); err != nil {
|
|
return err
|
|
}
|
|
|
|
r.logger.Debug("sent message", "peer", envelope.To, "message", envelope.Message)
|
|
|
|
case <-peerQueue.closed():
|
|
return nil
|
|
|
|
case <-r.stopCh:
|
|
return nil
|
|
}
|
|
}
|
|
}
|
|
|
|
// evictPeers evicts connected peers as requested by the peer manager.
|
|
func (r *Router) evictPeers() {
|
|
r.logger.Debug("starting evict routine")
|
|
ctx := r.stopCtx()
|
|
|
|
for {
|
|
peerID, err := r.peerManager.EvictNext(ctx)
|
|
|
|
switch {
|
|
case errors.Is(err, context.Canceled):
|
|
r.logger.Debug("stopping evict routine")
|
|
return
|
|
|
|
case err != nil:
|
|
r.logger.Error("failed to find next peer to evict", "err", err)
|
|
return
|
|
}
|
|
|
|
r.logger.Info("evicting peer", "peer", peerID)
|
|
|
|
r.peerMtx.RLock()
|
|
queue, ok := r.peerQueues[peerID]
|
|
r.peerMtx.RUnlock()
|
|
|
|
if ok {
|
|
queue.close()
|
|
}
|
|
}
|
|
}
|
|
|
|
// NodeInfo returns a copy of the current NodeInfo. Used for testing.
|
|
func (r *Router) NodeInfo() types.NodeInfo {
|
|
return r.nodeInfo.Copy()
|
|
}
|
|
|
|
// OnStart implements service.Service.
|
|
func (r *Router) OnStart() error {
|
|
r.Logger.Info(
|
|
"starting router",
|
|
"node_id", r.nodeInfo.NodeID,
|
|
"channels", r.nodeInfo.Channels,
|
|
"listen_addr", r.nodeInfo.ListenAddr,
|
|
)
|
|
|
|
go r.dialPeers()
|
|
go r.evictPeers()
|
|
|
|
for _, transport := range r.transports {
|
|
go r.acceptPeers(transport)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// OnStop implements service.Service.
|
|
//
|
|
// All channels must be closed by OpenChannel() callers before stopping the
|
|
// router, to prevent blocked channel sends in reactors. Channels are not closed
|
|
// here, since that would cause any reactor senders to panic, so it is the
|
|
// sender's responsibility.
|
|
func (r *Router) OnStop() {
|
|
// Signal router shutdown.
|
|
close(r.stopCh)
|
|
|
|
// Close transport listeners (unblocks Accept calls).
|
|
for _, transport := range r.transports {
|
|
if err := transport.Close(); err != nil {
|
|
r.logger.Error("failed to close transport", "transport", transport, "err", err)
|
|
}
|
|
}
|
|
|
|
// Collect all remaining queues, and wait for them to close.
|
|
queues := []queue{}
|
|
|
|
r.channelMtx.RLock()
|
|
for _, q := range r.channelQueues {
|
|
queues = append(queues, q)
|
|
}
|
|
r.channelMtx.RUnlock()
|
|
|
|
r.peerMtx.RLock()
|
|
for _, q := range r.peerQueues {
|
|
queues = append(queues, q)
|
|
}
|
|
r.peerMtx.RUnlock()
|
|
|
|
for _, q := range queues {
|
|
<-q.closed()
|
|
}
|
|
}
|
|
|
|
// stopCtx returns a new context that is canceled when the router stops.
|
|
func (r *Router) stopCtx() context.Context {
|
|
ctx, cancel := context.WithCancel(context.Background())
|
|
|
|
go func() {
|
|
<-r.stopCh
|
|
cancel()
|
|
}()
|
|
|
|
return ctx
|
|
}
|
|
|
|
type channelIDs map[ChannelID]struct{}
|
|
|
|
func toChannelIDs(bytes []byte) channelIDs {
|
|
c := make(map[ChannelID]struct{}, len(bytes))
|
|
for _, b := range bytes {
|
|
c[ChannelID(b)] = struct{}{}
|
|
}
|
|
return c
|
|
}
|