You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

601 lines
18 KiB

package consensus
import (
"bytes"
"errors"
"fmt"
"io"
"io/ioutil"
"os"
"path"
"strings"
"testing"
"time"
"github.com/tendermint/abci/example/dummy"
abci "github.com/tendermint/abci/types"
crypto "github.com/tendermint/go-crypto"
wire "github.com/tendermint/go-wire"
cmn "github.com/tendermint/tmlibs/common"
dbm "github.com/tendermint/tmlibs/db"
cfg "github.com/tendermint/tendermint/config"
"github.com/tendermint/tendermint/proxy"
sm "github.com/tendermint/tendermint/state"
"github.com/tendermint/tendermint/types"
"github.com/tendermint/tmlibs/log"
)
func init() {
config = ResetConfig("consensus_replay_test")
}
// These tests ensure we can always recover from failure at any part of the consensus process.
// There are two general failure scenarios: failure during consensus, and failure while applying the block.
// Only the latter interacts with the app and store,
// but the former has to deal with restrictions on re-use of priv_validator keys.
// The `WAL Tests` are for failures during the consensus;
// the `Handshake Tests` are for failures in applying the block.
// With the help of the WAL, we can recover from it all!
// NOTE: Files in this dir are generated by running the `build.sh` therein.
// It's a simple way to generate wals for a single block, or multiple blocks, with random transactions,
// and different part sizes. The output is not deterministic, and the stepChanges may need to be adjusted
// after running it (eg. sometimes small_block2 will have 5 block parts, sometimes 6).
// It should only have to be re-run if there is some breaking change to the consensus data structures (eg. blocks, votes)
// or to the behaviour of the app (eg. computes app hash differently)
var data_dir = path.Join(cmn.GoPath, "src/github.com/tendermint/tendermint/consensus", "test_data")
//------------------------------------------------------------------------------------------
// WAL Tests
// TODO: It would be better to verify explicitly which states we can recover from without the wal
// and which ones we need the wal for - then we'd also be able to only flush the
// wal writer when we need to, instead of with every message.
// the priv validator changes step at these lines for a block with 1 val and 1 part
var baseStepChanges = []int{3, 6, 8}
// test recovery from each line in each testCase
var testCases = []*testCase{
newTestCase("empty_block", baseStepChanges), // empty block (has 1 block part)
newTestCase("small_block1", baseStepChanges), // small block with txs in 1 block part
newTestCase("small_block2", []int{3, 9, 11}), // small block with txs across 6 smaller block parts
}
type testCase struct {
name string
log string //full cs wal
stepMap map[int]int8 // map lines of log to privval step
proposeLine int
prevoteLine int
precommitLine int
}
func newTestCase(name string, stepChanges []int) *testCase {
if len(stepChanges) != 3 {
panic(cmn.Fmt("a full wal has 3 step changes! Got array %v", stepChanges))
}
return &testCase{
name: name,
log: readWAL(path.Join(data_dir, name+".cswal")),
stepMap: newMapFromChanges(stepChanges),
proposeLine: stepChanges[0],
prevoteLine: stepChanges[1],
precommitLine: stepChanges[2],
}
}
func newMapFromChanges(changes []int) map[int]int8 {
changes = append(changes, changes[2]+1) // so we add the last step change to the map
m := make(map[int]int8)
var count int
for changeNum, nextChange := range changes {
for ; count < nextChange; count++ {
m[count] = int8(changeNum)
}
}
return m
}
func readWAL(p string) string {
b, err := ioutil.ReadFile(p)
if err != nil {
panic(err)
}
return string(b)
}
func writeWAL(walMsgs string) string {
tempDir := os.TempDir()
walDir := path.Join(tempDir, "/wal"+cmn.RandStr(12))
walFile := path.Join(walDir, "wal")
// Create WAL directory
err := cmn.EnsureDir(walDir, 0700)
if err != nil {
panic(err)
}
// Write the needed WAL to file
err = cmn.WriteFile(walFile, []byte(walMsgs), 0600)
if err != nil {
panic(err)
}
return walFile
}
func waitForBlock(newBlockCh chan interface{}, thisCase *testCase, i int) {
after := time.After(time.Second * 10)
select {
case <-newBlockCh:
case <-after:
panic(cmn.Fmt("Timed out waiting for new block for case '%s' line %d", thisCase.name, i))
}
}
func runReplayTest(t *testing.T, cs *ConsensusState, walFile string, newBlockCh chan interface{},
thisCase *testCase, i int) {
cs.config.SetWalFile(walFile)
started, err := cs.Start()
if err != nil {
t.Fatalf("Cannot start consensus: %v", err)
}
if !started {
t.Error("Consensus did not start")
}
// Wait to make a new block.
// This is just a signal that we haven't halted; its not something contained in the WAL itself.
// Assuming the consensus state is running, replay of any WAL, including the empty one,
// should eventually be followed by a new block, or else something is wrong
waitForBlock(newBlockCh, thisCase, i)
cs.evsw.Stop()
cs.Stop()
LOOP:
for {
select {
case <-newBlockCh:
default:
break LOOP
}
}
cs.Wait()
}
func toPV(pv types.PrivValidator) *types.PrivValidatorFS {
return pv.(*types.PrivValidatorFS)
}
func setupReplayTest(t *testing.T, thisCase *testCase, nLines int, crashAfter bool) (*ConsensusState, chan interface{}, string, string) {
t.Log("-------------------------------------")
t.Logf("Starting replay test %v (of %d lines of WAL). Crash after = %v", thisCase.name, nLines, crashAfter)
lineStep := nLines
if crashAfter {
lineStep -= 1
}
split := strings.Split(thisCase.log, "\n")
lastMsg := split[nLines]
// we write those lines up to (not including) one with the signature
walFile := writeWAL(strings.Join(split[:nLines], "\n") + "\n")
cs := fixedConsensusStateDummy()
// set the last step according to when we crashed vs the wal
toPV(cs.privValidator).LastHeight = 1 // first block
toPV(cs.privValidator).LastStep = thisCase.stepMap[lineStep]
t.Logf("[WARN] setupReplayTest LastStep=%v", toPV(cs.privValidator).LastStep)
newBlockCh := subscribeToEvent(cs.evsw, "tester", types.EventStringNewBlock(), 1)
return cs, newBlockCh, lastMsg, walFile
}
func readTimedWALMessage(t *testing.T, walMsg string) TimedWALMessage {
var err error
var msg TimedWALMessage
wire.ReadJSON(&msg, []byte(walMsg), &err)
if err != nil {
t.Fatalf("Error reading json data: %v", err)
}
return msg
}
//-----------------------------------------------
// Test the log at every iteration, and set the privVal last step
// as if the log was written after signing, before the crash
func TestWALCrashAfterWrite(t *testing.T) {
for _, thisCase := range testCases {
split := strings.Split(thisCase.log, "\n")
for i := 0; i < len(split)-1; i++ {
cs, newBlockCh, _, walFile := setupReplayTest(t, thisCase, i+1, true)
runReplayTest(t, cs, walFile, newBlockCh, thisCase, i+1)
}
}
}
//-----------------------------------------------
// Test the log as if we crashed after signing but before writing.
// This relies on privValidator.LastSignature being set
func TestWALCrashBeforeWritePropose(t *testing.T) {
for _, thisCase := range testCases {
lineNum := thisCase.proposeLine
// setup replay test where last message is a proposal
cs, newBlockCh, proposalMsg, walFile := setupReplayTest(t, thisCase, lineNum, false)
msg := readTimedWALMessage(t, proposalMsg)
proposal := msg.Msg.(msgInfo).Msg.(*ProposalMessage)
// Set LastSig
toPV(cs.privValidator).LastSignBytes = types.SignBytes(cs.state.ChainID, proposal.Proposal)
toPV(cs.privValidator).LastSignature = proposal.Proposal.Signature
runReplayTest(t, cs, walFile, newBlockCh, thisCase, lineNum)
}
}
func TestWALCrashBeforeWritePrevote(t *testing.T) {
for _, thisCase := range testCases {
testReplayCrashBeforeWriteVote(t, thisCase, thisCase.prevoteLine, types.EventStringCompleteProposal())
}
}
func TestWALCrashBeforeWritePrecommit(t *testing.T) {
for _, thisCase := range testCases {
testReplayCrashBeforeWriteVote(t, thisCase, thisCase.precommitLine, types.EventStringPolka())
}
}
func testReplayCrashBeforeWriteVote(t *testing.T, thisCase *testCase, lineNum int, eventString string) {
// setup replay test where last message is a vote
cs, newBlockCh, voteMsg, walFile := setupReplayTest(t, thisCase, lineNum, false)
types.AddListenerForEvent(cs.evsw, "tester", eventString, func(data types.TMEventData) {
msg := readTimedWALMessage(t, voteMsg)
vote := msg.Msg.(msgInfo).Msg.(*VoteMessage)
// Set LastSig
toPV(cs.privValidator).LastSignBytes = types.SignBytes(cs.state.ChainID, vote.Vote)
toPV(cs.privValidator).LastSignature = vote.Vote.Signature
})
runReplayTest(t, cs, walFile, newBlockCh, thisCase, lineNum)
}
//------------------------------------------------------------------------------------------
// Handshake Tests
var (
NUM_BLOCKS = 6 // number of blocks in the test_data/many_blocks.cswal
mempool = types.MockMempool{}
)
//---------------------------------------
// Test handshake/replay
// 0 - all synced up
// 1 - saved block but app and state are behind
// 2 - save block and committed but state is behind
var modes = []uint{0, 1, 2}
// Sync from scratch
func TestHandshakeReplayAll(t *testing.T) {
for _, m := range modes {
testHandshakeReplay(t, 0, m)
}
}
// Sync many, not from scratch
func TestHandshakeReplaySome(t *testing.T) {
for _, m := range modes {
testHandshakeReplay(t, 1, m)
}
}
// Sync from lagging by one
func TestHandshakeReplayOne(t *testing.T) {
for _, m := range modes {
testHandshakeReplay(t, NUM_BLOCKS-1, m)
}
}
// Sync from caught up
func TestHandshakeReplayNone(t *testing.T) {
for _, m := range modes {
testHandshakeReplay(t, NUM_BLOCKS, m)
}
}
// Make some blocks. Start a fresh app and apply nBlocks blocks. Then restart the app and sync it up with the remaining blocks
func testHandshakeReplay(t *testing.T, nBlocks int, mode uint) {
config := ResetConfig("proxy_test_")
// copy the many_blocks file
walBody, err := cmn.ReadFile(path.Join(data_dir, "many_blocks.cswal"))
if err != nil {
t.Fatal(err)
}
walFile := writeWAL(string(walBody))
config.Consensus.SetWalFile(walFile)
privVal := types.LoadPrivValidatorFS(config.PrivValidatorFile())
wal, err := NewWAL(walFile, false)
if err != nil {
t.Fatal(err)
}
wal.SetLogger(log.TestingLogger())
if _, err := wal.Start(); err != nil {
t.Fatal(err)
}
chain, commits, err := makeBlockchainFromWAL(wal)
if err != nil {
t.Fatalf(err.Error())
}
state, store := stateAndStore(config, privVal.GetPubKey())
store.chain = chain
store.commits = commits
// run the chain through state.ApplyBlock to build up the tendermint state
latestAppHash := buildTMStateFromChain(config, state, chain, mode)
// make a new client creator
dummyApp := dummy.NewPersistentDummyApplication(path.Join(config.DBDir(), "2"))
clientCreator2 := proxy.NewLocalClientCreator(dummyApp)
if nBlocks > 0 {
// run nBlocks against a new client to build up the app state.
// use a throwaway tendermint state
proxyApp := proxy.NewAppConns(clientCreator2, nil)
state, _ := stateAndStore(config, privVal.GetPubKey())
buildAppStateFromChain(proxyApp, state, chain, nBlocks, mode)
}
// now start the app using the handshake - it should sync
handshaker := NewHandshaker(state, store)
proxyApp := proxy.NewAppConns(clientCreator2, handshaker)
if _, err := proxyApp.Start(); err != nil {
t.Fatalf("Error starting proxy app connections: %v", err)
}
// get the latest app hash from the app
res, err := proxyApp.Query().InfoSync(abci.RequestInfo{""})
if err != nil {
t.Fatal(err)
}
// the app hash should be synced up
if !bytes.Equal(latestAppHash, res.LastBlockAppHash) {
t.Fatalf("Expected app hashes to match after handshake/replay. got %X, expected %X", res.LastBlockAppHash, latestAppHash)
}
expectedBlocksToSync := NUM_BLOCKS - nBlocks
if nBlocks == NUM_BLOCKS && mode > 0 {
expectedBlocksToSync += 1
} else if nBlocks > 0 && mode == 1 {
expectedBlocksToSync += 1
}
if handshaker.NBlocks() != expectedBlocksToSync {
t.Fatalf("Expected handshake to sync %d blocks, got %d", expectedBlocksToSync, handshaker.NBlocks())
}
}
func applyBlock(st *sm.State, blk *types.Block, proxyApp proxy.AppConns) {
testPartSize := st.Params.BlockPartSizeBytes
err := st.ApplyBlock(nil, proxyApp.Consensus(), blk, blk.MakePartSet(testPartSize).Header(), mempool)
if err != nil {
panic(err)
}
}
func buildAppStateFromChain(proxyApp proxy.AppConns,
state *sm.State, chain []*types.Block, nBlocks int, mode uint) {
// start a new app without handshake, play nBlocks blocks
if _, err := proxyApp.Start(); err != nil {
panic(err)
}
validators := types.TM2PB.Validators(state.Validators)
proxyApp.Consensus().InitChainSync(abci.RequestInitChain{validators})
defer proxyApp.Stop()
switch mode {
case 0:
for i := 0; i < nBlocks; i++ {
block := chain[i]
applyBlock(state, block, proxyApp)
}
case 1, 2:
for i := 0; i < nBlocks-1; i++ {
block := chain[i]
applyBlock(state, block, proxyApp)
}
if mode == 2 {
// update the dummy height and apphash
// as if we ran commit but not
applyBlock(state, chain[nBlocks-1], proxyApp)
}
}
}
func buildTMStateFromChain(config *cfg.Config, state *sm.State, chain []*types.Block, mode uint) []byte {
// run the whole chain against this client to build up the tendermint state
clientCreator := proxy.NewLocalClientCreator(dummy.NewPersistentDummyApplication(path.Join(config.DBDir(), "1")))
proxyApp := proxy.NewAppConns(clientCreator, nil) // sm.NewHandshaker(config, state, store, ReplayLastBlock))
if _, err := proxyApp.Start(); err != nil {
panic(err)
}
defer proxyApp.Stop()
validators := types.TM2PB.Validators(state.Validators)
proxyApp.Consensus().InitChainSync(abci.RequestInitChain{validators})
var latestAppHash []byte
switch mode {
case 0:
// sync right up
for _, block := range chain {
applyBlock(state, block, proxyApp)
}
latestAppHash = state.AppHash
case 1, 2:
// sync up to the penultimate as if we stored the block.
// whether we commit or not depends on the appHash
for _, block := range chain[:len(chain)-1] {
applyBlock(state, block, proxyApp)
}
// apply the final block to a state copy so we can
// get the right next appHash but keep the state back
stateCopy := state.Copy()
applyBlock(stateCopy, chain[len(chain)-1], proxyApp)
latestAppHash = stateCopy.AppHash
}
return latestAppHash
}
//--------------------------
// utils for making blocks
func makeBlockchainFromWAL(wal *WAL) ([]*types.Block, []*types.Commit, error) {
// Search for height marker
gr, found, err := wal.group.Search("#ENDHEIGHT: ", makeHeightSearchFunc(0))
if err != nil {
return nil, nil, err
}
if !found {
return nil, nil, errors.New(cmn.Fmt("WAL does not contain height %d.", 1))
}
defer gr.Close()
// log.Notice("Build a blockchain by reading from the WAL")
var blockParts *types.PartSet
var blocks []*types.Block
var commits []*types.Commit
for {
line, err := gr.ReadLine()
if err != nil {
if err == io.EOF {
break
} else {
return nil, nil, err
}
}
piece, err := readPieceFromWAL([]byte(line))
if err != nil {
return nil, nil, err
}
if piece == nil {
continue
}
switch p := piece.(type) {
case *types.PartSetHeader:
// if its not the first one, we have a full block
if blockParts != nil {
var n int
block := wire.ReadBinary(&types.Block{}, blockParts.GetReader(), 0, &n, &err).(*types.Block)
blocks = append(blocks, block)
}
blockParts = types.NewPartSetFromHeader(*p)
case *types.Part:
_, err := blockParts.AddPart(p, false)
if err != nil {
return nil, nil, err
}
case *types.Vote:
if p.Type == types.VoteTypePrecommit {
commit := &types.Commit{
BlockID: p.BlockID,
Precommits: []*types.Vote{p},
}
commits = append(commits, commit)
}
}
}
// grab the last block too
var n int
block := wire.ReadBinary(&types.Block{}, blockParts.GetReader(), 0, &n, &err).(*types.Block)
blocks = append(blocks, block)
return blocks, commits, nil
}
func readPieceFromWAL(msgBytes []byte) (interface{}, error) {
// Skip over empty and meta lines
if len(msgBytes) == 0 || msgBytes[0] == '#' {
return nil, nil
}
var err error
var msg TimedWALMessage
wire.ReadJSON(&msg, msgBytes, &err)
if err != nil {
fmt.Println("MsgBytes:", msgBytes, string(msgBytes))
return nil, fmt.Errorf("Error reading json data: %v", err)
}
// for logging
switch m := msg.Msg.(type) {
case msgInfo:
switch msg := m.Msg.(type) {
case *ProposalMessage:
return &msg.Proposal.BlockPartsHeader, nil
case *BlockPartMessage:
return msg.Part, nil
case *VoteMessage:
return msg.Vote, nil
}
}
return nil, nil
}
// fresh state and mock store
func stateAndStore(config *cfg.Config, pubKey crypto.PubKey) (*sm.State, *mockBlockStore) {
stateDB := dbm.NewMemDB()
state, _ := sm.MakeGenesisStateFromFile(stateDB, config.GenesisFile())
state.SetLogger(log.TestingLogger().With("module", "state"))
store := NewMockBlockStore(config, state.Params)
return state, store
}
//----------------------------------
// mock block store
type mockBlockStore struct {
config *cfg.Config
params types.ConsensusParams
chain []*types.Block
commits []*types.Commit
}
// TODO: NewBlockStore(db.NewMemDB) ...
func NewMockBlockStore(config *cfg.Config, params types.ConsensusParams) *mockBlockStore {
return &mockBlockStore{config, params, nil, nil}
}
func (bs *mockBlockStore) Height() int { return len(bs.chain) }
func (bs *mockBlockStore) LoadBlock(height int) *types.Block { return bs.chain[height-1] }
func (bs *mockBlockStore) LoadBlockMeta(height int) *types.BlockMeta {
block := bs.chain[height-1]
return &types.BlockMeta{
BlockID: types.BlockID{block.Hash(), block.MakePartSet(bs.params.BlockPartSizeBytes).Header()},
Header: block.Header,
}
}
func (bs *mockBlockStore) LoadBlockPart(height int, index int) *types.Part { return nil }
func (bs *mockBlockStore) SaveBlock(block *types.Block, blockParts *types.PartSet, seenCommit *types.Commit) {
}
func (bs *mockBlockStore) LoadBlockCommit(height int) *types.Commit {
return bs.commits[height-1]
}
func (bs *mockBlockStore) LoadSeenCommit(height int) *types.Commit {
return bs.commits[height-1]
}