You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1102 lines
31 KiB

package p2p
import (
"context"
"errors"
"fmt"
"io"
"math/rand"
"net"
"runtime"
"sync"
"time"
"github.com/gogo/protobuf/proto"
"github.com/tendermint/tendermint/crypto"
"github.com/tendermint/tendermint/libs/log"
"github.com/tendermint/tendermint/libs/service"
"github.com/tendermint/tendermint/types"
)
const queueBufferDefault = 32
// ChannelID is an arbitrary channel ID.
type ChannelID uint16
// Envelope contains a message with sender/receiver routing info.
type Envelope struct {
From types.NodeID // sender (empty if outbound)
To types.NodeID // receiver (empty if inbound)
Broadcast bool // send to all connected peers (ignores To)
Message proto.Message // message payload
// channelID is for internal Router use, set on outbound messages to inform
// the sendPeer() goroutine which transport channel to use.
//
// FIXME: If we migrate the Transport API to a byte-oriented multi-stream
// API, this will no longer be necessary since each channel will be mapped
// onto a stream during channel/peer setup. See:
// https://github.com/tendermint/spec/pull/227
channelID ChannelID
}
// PeerError is a peer error reported via Channel.Error.
//
// FIXME: This currently just disconnects the peer, which is too simplistic.
// For example, some errors should be logged, some should cause disconnects,
// and some should ban the peer.
//
// FIXME: This should probably be replaced by a more general PeerBehavior
// concept that can mark good and bad behavior and contributes to peer scoring.
// It should possibly also allow reactors to request explicit actions, e.g.
// disconnection or banning, in addition to doing this based on aggregates.
type PeerError struct {
NodeID types.NodeID
Err error
}
// Channel is a bidirectional channel to exchange Protobuf messages with peers,
// wrapped in Envelope to specify routing info (i.e. sender/receiver).
type Channel struct {
ID ChannelID
In <-chan Envelope // inbound messages (peers to reactors)
Out chan<- Envelope // outbound messages (reactors to peers)
Error chan<- PeerError // peer error reporting
messageType proto.Message // the channel's message type, used for unmarshaling
closeCh chan struct{}
closeOnce sync.Once
}
// NewChannel creates a new channel. It is primarily for internal and test
// use, reactors should use Router.OpenChannel().
func NewChannel(
id ChannelID,
messageType proto.Message,
inCh <-chan Envelope,
outCh chan<- Envelope,
errCh chan<- PeerError,
) *Channel {
return &Channel{
ID: id,
messageType: messageType,
In: inCh,
Out: outCh,
Error: errCh,
closeCh: make(chan struct{}),
}
}
// Close closes the channel. Future sends on Out and Error will panic. The In
// channel remains open to avoid having to synchronize Router senders, which
// should use Done() to detect channel closure instead.
func (c *Channel) Close() {
c.closeOnce.Do(func() {
close(c.closeCh)
close(c.Out)
close(c.Error)
})
}
// Done returns a channel that's closed when Channel.Close() is called.
func (c *Channel) Done() <-chan struct{} {
return c.closeCh
}
// Wrapper is a Protobuf message that can contain a variety of inner messages
// (e.g. via oneof fields). If a Channel's message type implements Wrapper, the
// Router will automatically wrap outbound messages and unwrap inbound messages,
// such that reactors do not have to do this themselves.
type Wrapper interface {
proto.Message
// Wrap will take a message and wrap it in this one if possible.
Wrap(proto.Message) error
// Unwrap will unwrap the inner message contained in this message.
Unwrap() (proto.Message, error)
}
// RouterOptions specifies options for a Router.
type RouterOptions struct {
// ResolveTimeout is the timeout for resolving NodeAddress URLs.
// 0 means no timeout.
ResolveTimeout time.Duration
// DialTimeout is the timeout for dialing a peer. 0 means no timeout.
DialTimeout time.Duration
// HandshakeTimeout is the timeout for handshaking with a peer. 0 means
// no timeout.
HandshakeTimeout time.Duration
// QueueType must be "wdrr" (Weighed Deficit Round Robin), "priority", or
// "fifo". Defaults to "fifo".
QueueType string
// MaxIncomingConnectionAttempts rate limits the number of incoming connection
// attempts per IP address. Defaults to 100.
MaxIncomingConnectionAttempts uint
// IncomingConnectionWindow describes how often an IP address
// can attempt to create a new connection. Defaults to 10
// milliseconds, and cannot be less than 1 millisecond.
IncomingConnectionWindow time.Duration
// FilterPeerByIP is used by the router to inject filtering
// behavior for new incoming connections. The router passes
// the remote IP of the incoming connection the port number as
// arguments. Functions should return an error to reject the
// peer.
FilterPeerByIP func(context.Context, net.IP, uint16) error
// FilterPeerByID is used by the router to inject filtering
// behavior for new incoming connections. The router passes
// the NodeID of the node before completing the connection,
// but this occurs after the handshake is complete. Filter by
// IP address to filter before the handshake. Functions should
// return an error to reject the peer.
FilterPeerByID func(context.Context, types.NodeID) error
// DialSleep controls the amount of time that the router
// sleeps between dialing peers. If not set, a default value
// is used that sleeps for a (random) amount of time up to 3
// seconds between submitting each peer to be dialed.
DialSleep func(context.Context)
// NumConcrruentDials controls how many parallel go routines
// are used to dial peers. This defaults to the value of
// runtime.NumCPU.
NumConcurrentDials func() int
}
const (
queueTypeFifo = "fifo"
queueTypePriority = "priority"
queueTypeWDRR = "wdrr"
)
// Validate validates router options.
func (o *RouterOptions) Validate() error {
switch o.QueueType {
case "":
o.QueueType = queueTypeFifo
case queueTypeFifo, queueTypeWDRR, queueTypePriority:
// passI me
default:
return fmt.Errorf("queue type %q is not supported", o.QueueType)
}
switch {
case o.IncomingConnectionWindow == 0:
o.IncomingConnectionWindow = 100 * time.Millisecond
case o.IncomingConnectionWindow < time.Millisecond:
return fmt.Errorf("incomming connection window must be grater than 1m [%s]",
o.IncomingConnectionWindow)
}
if o.MaxIncomingConnectionAttempts == 0 {
o.MaxIncomingConnectionAttempts = 100
}
return nil
}
// Router manages peer connections and routes messages between peers and reactor
// channels. It takes a PeerManager for peer lifecycle management (e.g. which
// peers to dial and when) and a set of Transports for connecting and
// communicating with peers.
//
// On startup, three main goroutines are spawned to maintain peer connections:
//
// dialPeers(): in a loop, calls PeerManager.DialNext() to get the next peer
// address to dial and spawns a goroutine that dials the peer, handshakes
// with it, and begins to route messages if successful.
//
// acceptPeers(): in a loop, waits for an inbound connection via
// Transport.Accept() and spawns a goroutine that handshakes with it and
// begins to route messages if successful.
//
// evictPeers(): in a loop, calls PeerManager.EvictNext() to get the next
// peer to evict, and disconnects it by closing its message queue.
//
// When a peer is connected, an outbound peer message queue is registered in
// peerQueues, and routePeer() is called to spawn off two additional goroutines:
//
// sendPeer(): waits for an outbound message from the peerQueues queue,
// marshals it, and passes it to the peer transport which delivers it.
//
// receivePeer(): waits for an inbound message from the peer transport,
// unmarshals it, and passes it to the appropriate inbound channel queue
// in channelQueues.
//
// When a reactor opens a channel via OpenChannel, an inbound channel message
// queue is registered in channelQueues, and a channel goroutine is spawned:
//
// routeChannel(): waits for an outbound message from the channel, looks
// up the recipient peer's outbound message queue in peerQueues, and submits
// the message to it.
//
// All channel sends in the router are blocking. It is the responsibility of the
// queue interface in peerQueues and channelQueues to prioritize and drop
// messages as appropriate during contention to prevent stalls and ensure good
// quality of service.
type Router struct {
*service.BaseService
logger log.Logger
metrics *Metrics
options RouterOptions
nodeInfo types.NodeInfo
privKey crypto.PrivKey
peerManager *PeerManager
chDescs []ChannelDescriptor
transports []Transport
connTracker connectionTracker
protocolTransports map[Protocol]Transport
stopCh chan struct{} // signals Router shutdown
peerMtx sync.RWMutex
peerQueues map[types.NodeID]queue // outbound messages per peer for all channels
// the channels that the peer queue has open
peerChannels map[types.NodeID]channelIDs
queueFactory func(int) queue
// FIXME: We don't strictly need to use a mutex for this if we seal the
// channels on router start. This depends on whether we want to allow
// dynamic channels in the future.
channelMtx sync.RWMutex
channelQueues map[ChannelID]queue // inbound messages from all peers to a single channel
channelMessages map[ChannelID]proto.Message
}
// NewRouter creates a new Router. The given Transports must already be
// listening on appropriate interfaces, and will be closed by the Router when it
// stops.
func NewRouter(
logger log.Logger,
metrics *Metrics,
nodeInfo types.NodeInfo,
privKey crypto.PrivKey,
peerManager *PeerManager,
transports []Transport,
options RouterOptions,
) (*Router, error) {
if err := options.Validate(); err != nil {
return nil, err
}
router := &Router{
logger: logger,
metrics: metrics,
nodeInfo: nodeInfo,
privKey: privKey,
connTracker: newConnTracker(
options.MaxIncomingConnectionAttempts,
options.IncomingConnectionWindow,
),
chDescs: make([]ChannelDescriptor, 0),
transports: transports,
protocolTransports: map[Protocol]Transport{},
peerManager: peerManager,
options: options,
stopCh: make(chan struct{}),
channelQueues: map[ChannelID]queue{},
channelMessages: map[ChannelID]proto.Message{},
peerQueues: map[types.NodeID]queue{},
peerChannels: make(map[types.NodeID]channelIDs),
}
router.BaseService = service.NewBaseService(logger, "router", router)
qf, err := router.createQueueFactory()
if err != nil {
return nil, err
}
router.queueFactory = qf
for _, transport := range transports {
for _, protocol := range transport.Protocols() {
if _, ok := router.protocolTransports[protocol]; !ok {
router.protocolTransports[protocol] = transport
}
}
}
return router, nil
}
func (r *Router) createQueueFactory() (func(int) queue, error) {
switch r.options.QueueType {
case queueTypeFifo:
return newFIFOQueue, nil
case queueTypePriority:
return func(size int) queue {
if size%2 != 0 {
size++
}
q := newPQScheduler(r.logger, r.metrics, r.chDescs, uint(size)/2, uint(size)/2, defaultCapacity)
q.start()
return q
}, nil
case queueTypeWDRR:
return func(size int) queue {
if size%2 != 0 {
size++
}
q := newWDRRScheduler(r.logger, r.metrics, r.chDescs, uint(size)/2, uint(size)/2, defaultCapacity)
q.start()
return q
}, nil
default:
return nil, fmt.Errorf("cannot construct queue of type %q", r.options.QueueType)
}
}
// OpenChannel opens a new channel for the given message type. The caller must
// close the channel when done, before stopping the Router. messageType is the
// type of message passed through the channel (used for unmarshaling), which can
// implement Wrapper to automatically (un)wrap multiple message types in a
// wrapper message. The caller may provide a size to make the channel buffered,
// which internally makes the inbound, outbound, and error channel buffered.
func (r *Router) OpenChannel(chDesc ChannelDescriptor, messageType proto.Message, size int) (*Channel, error) {
r.channelMtx.Lock()
defer r.channelMtx.Unlock()
id := ChannelID(chDesc.ID)
if _, ok := r.channelQueues[id]; ok {
return nil, fmt.Errorf("channel %v already exists", id)
}
r.chDescs = append(r.chDescs, chDesc)
queue := r.queueFactory(size)
outCh := make(chan Envelope, size)
errCh := make(chan PeerError, size)
channel := NewChannel(id, messageType, queue.dequeue(), outCh, errCh)
var wrapper Wrapper
if w, ok := messageType.(Wrapper); ok {
wrapper = w
}
r.channelQueues[id] = queue
r.channelMessages[id] = messageType
// add the channel to the nodeInfo if it's not already there.
r.nodeInfo.AddChannel(uint16(chDesc.ID))
go func() {
defer func() {
r.channelMtx.Lock()
delete(r.channelQueues, id)
delete(r.channelMessages, id)
r.channelMtx.Unlock()
queue.close()
}()
r.routeChannel(id, outCh, errCh, wrapper)
}()
return channel, nil
}
// routeChannel receives outbound channel messages and routes them to the
// appropriate peer. It also receives peer errors and reports them to the peer
// manager. It returns when either the outbound channel or error channel is
// closed, or the Router is stopped. wrapper is an optional message wrapper
// for messages, see Wrapper for details.
func (r *Router) routeChannel(
chID ChannelID,
outCh <-chan Envelope,
errCh <-chan PeerError,
wrapper Wrapper,
) {
for {
select {
case envelope, ok := <-outCh:
if !ok {
return
}
// Mark the envelope with the channel ID to allow sendPeer() to pass
// it on to Transport.SendMessage().
envelope.channelID = chID
// wrap the message in a wrapper message, if requested
if wrapper != nil {
msg := proto.Clone(wrapper)
if err := msg.(Wrapper).Wrap(envelope.Message); err != nil {
r.Logger.Error("failed to wrap message", "channel", chID, "err", err)
continue
}
envelope.Message = msg
}
// collect peer queues to pass the message via
var queues []queue
if envelope.Broadcast {
r.peerMtx.RLock()
queues = make([]queue, 0, len(r.peerQueues))
for nodeID, q := range r.peerQueues {
peerChs := r.peerChannels[nodeID]
// check whether the peer is receiving on that channel
if _, ok := peerChs[chID]; ok {
queues = append(queues, q)
}
}
r.peerMtx.RUnlock()
} else {
r.peerMtx.RLock()
q, ok := r.peerQueues[envelope.To]
contains := false
if ok {
peerChs := r.peerChannels[envelope.To]
// check whether the peer is receiving on that channel
_, contains = peerChs[chID]
}
r.peerMtx.RUnlock()
if !ok {
r.logger.Debug("dropping message for unconnected peer", "peer", envelope.To, "channel", chID)
continue
}
if !contains {
// reactor tried to send a message across a channel that the
// peer doesn't have available. This is a known issue due to
// how peer subscriptions work:
// https://github.com/tendermint/tendermint/issues/6598
continue
}
queues = []queue{q}
}
// send message to peers
for _, q := range queues {
start := time.Now().UTC()
select {
case q.enqueue() <- envelope:
r.metrics.RouterPeerQueueSend.Observe(time.Since(start).Seconds())
case <-q.closed():
r.logger.Debug("dropping message for unconnected peer", "peer", envelope.To, "channel", chID)
case <-r.stopCh:
return
}
}
case peerError, ok := <-errCh:
if !ok {
return
}
r.logger.Error("peer error, evicting", "peer", peerError.NodeID, "err", peerError.Err)
r.peerManager.Errored(peerError.NodeID, peerError.Err)
case <-r.stopCh:
return
}
}
}
func (r *Router) numConccurentDials() int {
if r.options.NumConcurrentDials == nil {
return runtime.NumCPU()
}
return r.options.NumConcurrentDials()
}
func (r *Router) filterPeersIP(ctx context.Context, ip net.IP, port uint16) error {
if r.options.FilterPeerByIP == nil {
return nil
}
return r.options.FilterPeerByIP(ctx, ip, port)
}
func (r *Router) filterPeersID(ctx context.Context, id types.NodeID) error {
if r.options.FilterPeerByID == nil {
return nil
}
return r.options.FilterPeerByID(ctx, id)
}
func (r *Router) dialSleep(ctx context.Context) {
if r.options.DialSleep == nil {
// nolint:gosec // G404: Use of weak random number generator
timer := time.NewTimer(time.Duration(rand.Int63n(dialRandomizerIntervalMilliseconds)) * time.Millisecond)
defer timer.Stop()
select {
case <-ctx.Done():
case <-timer.C:
}
return
}
r.options.DialSleep(ctx)
}
// acceptPeers accepts inbound connections from peers on the given transport,
// and spawns goroutines that route messages to/from them.
func (r *Router) acceptPeers(transport Transport) {
r.logger.Debug("starting accept routine", "transport", transport)
ctx := r.stopCtx()
for {
conn, err := transport.Accept()
switch err {
case nil:
case io.EOF:
r.logger.Debug("stopping accept routine", "transport", transport)
return
default:
r.logger.Error("failed to accept connection", "transport", transport, "err", err)
return
}
incomingIP := conn.RemoteEndpoint().IP
if err := r.connTracker.AddConn(incomingIP); err != nil {
closeErr := conn.Close()
r.logger.Debug("rate limiting incoming peer",
"err", err,
"ip", incomingIP.String(),
"close_err", closeErr,
)
return
}
// Spawn a goroutine for the handshake, to avoid head-of-line blocking.
go r.openConnection(ctx, conn)
}
}
func (r *Router) openConnection(ctx context.Context, conn Connection) {
defer conn.Close()
defer r.connTracker.RemoveConn(conn.RemoteEndpoint().IP)
re := conn.RemoteEndpoint()
incomingIP := re.IP
if err := r.filterPeersIP(ctx, incomingIP, re.Port); err != nil {
r.logger.Debug("peer filtered by IP", "ip", incomingIP.String(), "err", err)
return
}
// FIXME: The peer manager may reject the peer during Accepted()
// after we've handshaked with the peer (to find out which peer it
// is). However, because the handshake has no ack, the remote peer
// will think the handshake was successful and start sending us
// messages.
//
// This can cause problems in tests, where a disconnection can cause
// the local node to immediately redial, while the remote node may
// not have completed the disconnection yet and therefore reject the
// reconnection attempt (since it thinks we're still connected from
// before).
//
// The Router should do the handshake and have a final ack/fail
// message to make sure both ends have accepted the connection, such
// that it can be coordinated with the peer manager.
peerInfo, _, err := r.handshakePeer(ctx, conn, "")
switch {
case errors.Is(err, context.Canceled):
return
case err != nil:
r.logger.Error("peer handshake failed", "endpoint", conn, "err", err)
return
}
if err := r.filterPeersID(ctx, peerInfo.NodeID); err != nil {
r.logger.Debug("peer filtered by node ID", "node", peerInfo.NodeID, "err", err)
return
}
if err := r.runWithPeerMutex(func() error { return r.peerManager.Accepted(peerInfo.NodeID) }); err != nil {
r.logger.Error("failed to accept connection",
"op", "incoming/accepted", "peer", peerInfo.NodeID, "err", err)
return
}
r.routePeer(peerInfo.NodeID, conn, toChannelIDs(peerInfo.Channels))
}
// dialPeers maintains outbound connections to peers by dialing them.
func (r *Router) dialPeers() {
r.logger.Debug("starting dial routine")
ctx := r.stopCtx()
addresses := make(chan NodeAddress)
wg := &sync.WaitGroup{}
// Start a limited number of goroutines to dial peers in
// parallel. the goal is to avoid starting an unbounded number
// of goroutines thereby spamming the network, but also being
// able to add peers at a reasonable pace, though the number
// is somewhat arbitrary. The action is further throttled by a
// sleep after sending to the addresses channel.
for i := 0; i < r.numConccurentDials(); i++ {
wg.Add(1)
go func() {
defer wg.Done()
for {
select {
case <-ctx.Done():
return
case address := <-addresses:
r.connectPeer(ctx, address)
}
}
}()
}
LOOP:
for {
address, err := r.peerManager.DialNext(ctx)
switch {
case errors.Is(err, context.Canceled):
r.logger.Debug("stopping dial routine")
break LOOP
case err != nil:
r.logger.Error("failed to find next peer to dial", "err", err)
break LOOP
}
select {
case addresses <- address:
// this jitters the frequency that we call
// DialNext and prevents us from attempting to
// create connections too quickly.
r.dialSleep(ctx)
continue
case <-ctx.Done():
close(addresses)
break LOOP
}
}
wg.Wait()
}
func (r *Router) connectPeer(ctx context.Context, address NodeAddress) {
conn, err := r.dialPeer(ctx, address)
switch {
case errors.Is(err, context.Canceled):
return
case err != nil:
r.logger.Error("failed to dial peer", "peer", address, "err", err)
if err = r.peerManager.DialFailed(address); err != nil {
r.logger.Error("failed to report dial failure", "peer", address, "err", err)
}
return
}
peerInfo, _, err := r.handshakePeer(ctx, conn, address.NodeID)
switch {
case errors.Is(err, context.Canceled):
conn.Close()
return
case err != nil:
r.logger.Error("failed to handshake with peer", "peer", address, "err", err)
if err = r.peerManager.DialFailed(address); err != nil {
r.logger.Error("failed to report dial failure", "peer", address, "err", err)
}
conn.Close()
return
}
if err := r.runWithPeerMutex(func() error { return r.peerManager.Dialed(address) }); err != nil {
r.logger.Error("failed to dial peer",
"op", "outgoing/dialing", "peer", address.NodeID, "err", err)
conn.Close()
return
}
// routePeer (also) calls connection close
go r.routePeer(address.NodeID, conn, toChannelIDs(peerInfo.Channels))
}
func (r *Router) getOrMakeQueue(peerID types.NodeID, channels channelIDs) queue {
r.peerMtx.Lock()
defer r.peerMtx.Unlock()
if peerQueue, ok := r.peerQueues[peerID]; ok {
return peerQueue
}
peerQueue := r.queueFactory(queueBufferDefault)
r.peerQueues[peerID] = peerQueue
r.peerChannels[peerID] = channels
return peerQueue
}
// dialPeer connects to a peer by dialing it.
func (r *Router) dialPeer(ctx context.Context, address NodeAddress) (Connection, error) {
resolveCtx := ctx
if r.options.ResolveTimeout > 0 {
var cancel context.CancelFunc
resolveCtx, cancel = context.WithTimeout(resolveCtx, r.options.ResolveTimeout)
defer cancel()
}
r.logger.Debug("resolving peer address", "peer", address)
endpoints, err := address.Resolve(resolveCtx)
switch {
case err != nil:
return nil, fmt.Errorf("failed to resolve address %q: %w", address, err)
case len(endpoints) == 0:
return nil, fmt.Errorf("address %q did not resolve to any endpoints", address)
}
for _, endpoint := range endpoints {
transport, ok := r.protocolTransports[endpoint.Protocol]
if !ok {
r.logger.Error("no transport found for protocol", "endpoint", endpoint)
continue
}
dialCtx := ctx
if r.options.DialTimeout > 0 {
var cancel context.CancelFunc
dialCtx, cancel = context.WithTimeout(dialCtx, r.options.DialTimeout)
defer cancel()
}
// FIXME: When we dial and handshake the peer, we should pass it
// appropriate address(es) it can use to dial us back. It can't use our
// remote endpoint, since TCP uses different port numbers for outbound
// connections than it does for inbound. Also, we may need to vary this
// by the peer's endpoint, since e.g. a peer on 192.168.0.0 can reach us
// on a private address on this endpoint, but a peer on the public
// Internet can't and needs a different public address.
conn, err := transport.Dial(dialCtx, endpoint)
if err != nil {
r.logger.Error("failed to dial endpoint", "peer", address.NodeID, "endpoint", endpoint, "err", err)
} else {
r.logger.Debug("dialed peer", "peer", address.NodeID, "endpoint", endpoint)
return conn, nil
}
}
return nil, errors.New("all endpoints failed")
}
// handshakePeer handshakes with a peer, validating the peer's information. If
// expectID is given, we check that the peer's info matches it.
func (r *Router) handshakePeer(
ctx context.Context,
conn Connection,
expectID types.NodeID,
) (types.NodeInfo, crypto.PubKey, error) {
if r.options.HandshakeTimeout > 0 {
var cancel context.CancelFunc
ctx, cancel = context.WithTimeout(ctx, r.options.HandshakeTimeout)
defer cancel()
}
peerInfo, peerKey, err := conn.Handshake(ctx, r.nodeInfo, r.privKey)
if err != nil {
return peerInfo, peerKey, err
}
if err = peerInfo.Validate(); err != nil {
return peerInfo, peerKey, fmt.Errorf("invalid handshake NodeInfo: %w", err)
}
if types.NodeIDFromPubKey(peerKey) != peerInfo.NodeID {
return peerInfo, peerKey, fmt.Errorf("peer's public key did not match its node ID %q (expected %q)",
peerInfo.NodeID, types.NodeIDFromPubKey(peerKey))
}
if expectID != "" && expectID != peerInfo.NodeID {
return peerInfo, peerKey, fmt.Errorf("expected to connect with peer %q, got %q",
expectID, peerInfo.NodeID)
}
if err := r.nodeInfo.CompatibleWith(peerInfo); err != nil {
return peerInfo, peerKey, ErrRejected{
err: err,
id: peerInfo.ID(),
isIncompatible: true,
}
}
return peerInfo, peerKey, nil
}
func (r *Router) runWithPeerMutex(fn func() error) error {
r.peerMtx.Lock()
defer r.peerMtx.Unlock()
return fn()
}
// routePeer routes inbound and outbound messages between a peer and the reactor
// channels. It will close the given connection and send queue when done, or if
// they are closed elsewhere it will cause this method to shut down and return.
func (r *Router) routePeer(peerID types.NodeID, conn Connection, channels channelIDs) {
r.metrics.Peers.Add(1)
r.peerManager.Ready(peerID)
sendQueue := r.getOrMakeQueue(peerID, channels)
defer func() {
r.peerMtx.Lock()
delete(r.peerQueues, peerID)
delete(r.peerChannels, peerID)
r.peerMtx.Unlock()
sendQueue.close()
r.peerManager.Disconnected(peerID)
r.metrics.Peers.Add(-1)
}()
r.logger.Info("peer connected", "peer", peerID, "endpoint", conn)
errCh := make(chan error, 2)
go func() {
errCh <- r.receivePeer(peerID, conn)
}()
go func() {
errCh <- r.sendPeer(peerID, conn, sendQueue)
}()
err := <-errCh
_ = conn.Close()
sendQueue.close()
if e := <-errCh; err == nil {
// The first err was nil, so we update it with the second err, which may
// or may not be nil.
err = e
}
switch err {
case nil, io.EOF:
r.logger.Info("peer disconnected", "peer", peerID, "endpoint", conn)
default:
r.logger.Error("peer failure", "peer", peerID, "endpoint", conn, "err", err)
}
}
// receivePeer receives inbound messages from a peer, deserializes them and
// passes them on to the appropriate channel.
func (r *Router) receivePeer(peerID types.NodeID, conn Connection) error {
for {
chID, bz, err := conn.ReceiveMessage()
if err != nil {
return err
}
r.channelMtx.RLock()
queue, ok := r.channelQueues[chID]
messageType := r.channelMessages[chID]
r.channelMtx.RUnlock()
if !ok {
r.logger.Debug("dropping message for unknown channel", "peer", peerID, "channel", chID)
continue
}
msg := proto.Clone(messageType)
if err := proto.Unmarshal(bz, msg); err != nil {
r.logger.Error("message decoding failed, dropping message", "peer", peerID, "err", err)
continue
}
if wrapper, ok := msg.(Wrapper); ok {
msg, err = wrapper.Unwrap()
if err != nil {
r.logger.Error("failed to unwrap message", "err", err)
continue
}
}
start := time.Now().UTC()
select {
case queue.enqueue() <- Envelope{From: peerID, Message: msg}:
r.metrics.PeerReceiveBytesTotal.With(
"chID", fmt.Sprint(chID),
"peer_id", string(peerID)).Add(float64(proto.Size(msg)))
r.metrics.RouterChannelQueueSend.Observe(time.Since(start).Seconds())
r.logger.Debug("received message", "peer", peerID, "message", msg)
case <-queue.closed():
r.logger.Debug("channel closed, dropping message", "peer", peerID, "channel", chID)
case <-r.stopCh:
return nil
}
}
}
// sendPeer sends queued messages to a peer.
func (r *Router) sendPeer(peerID types.NodeID, conn Connection, peerQueue queue) error {
for {
start := time.Now().UTC()
select {
case envelope := <-peerQueue.dequeue():
r.metrics.RouterPeerQueueRecv.Observe(time.Since(start).Seconds())
if envelope.Message == nil {
r.logger.Error("dropping nil message", "peer", peerID)
continue
}
bz, err := proto.Marshal(envelope.Message)
if err != nil {
r.logger.Error("failed to marshal message", "peer", peerID, "err", err)
continue
}
_, err = conn.SendMessage(envelope.channelID, bz)
if err != nil {
return err
}
r.logger.Debug("sent message", "peer", envelope.To, "message", envelope.Message)
case <-peerQueue.closed():
return nil
case <-r.stopCh:
return nil
}
}
}
// evictPeers evicts connected peers as requested by the peer manager.
func (r *Router) evictPeers() {
r.logger.Debug("starting evict routine")
ctx := r.stopCtx()
for {
peerID, err := r.peerManager.EvictNext(ctx)
switch {
case errors.Is(err, context.Canceled):
r.logger.Debug("stopping evict routine")
return
case err != nil:
r.logger.Error("failed to find next peer to evict", "err", err)
return
}
r.logger.Info("evicting peer", "peer", peerID)
r.peerMtx.RLock()
queue, ok := r.peerQueues[peerID]
r.peerMtx.RUnlock()
if ok {
queue.close()
}
}
}
// NodeInfo returns a copy of the current NodeInfo. Used for testing.
func (r *Router) NodeInfo() types.NodeInfo {
return r.nodeInfo.Copy()
}
// OnStart implements service.Service.
func (r *Router) OnStart() error {
netAddr, _ := r.nodeInfo.NetAddress()
r.Logger.Info(
"starting router",
"node_id", r.nodeInfo.NodeID,
"channels", r.nodeInfo.Channels,
"listen_addr", r.nodeInfo.ListenAddr,
"net_addr", netAddr,
)
go r.dialPeers()
go r.evictPeers()
for _, transport := range r.transports {
go r.acceptPeers(transport)
}
return nil
}
// OnStop implements service.Service.
//
// All channels must be closed by OpenChannel() callers before stopping the
// router, to prevent blocked channel sends in reactors. Channels are not closed
// here, since that would cause any reactor senders to panic, so it is the
// sender's responsibility.
func (r *Router) OnStop() {
// Signal router shutdown.
close(r.stopCh)
// Close transport listeners (unblocks Accept calls).
for _, transport := range r.transports {
if err := transport.Close(); err != nil {
r.logger.Error("failed to close transport", "transport", transport, "err", err)
}
}
// Collect all remaining queues, and wait for them to close.
queues := []queue{}
r.channelMtx.RLock()
for _, q := range r.channelQueues {
queues = append(queues, q)
}
r.channelMtx.RUnlock()
r.peerMtx.RLock()
for _, q := range r.peerQueues {
queues = append(queues, q)
}
r.peerMtx.RUnlock()
for _, q := range queues {
<-q.closed()
}
}
// stopCtx returns a new context that is canceled when the router stops.
func (r *Router) stopCtx() context.Context {
ctx, cancel := context.WithCancel(context.Background())
go func() {
<-r.stopCh
cancel()
}()
return ctx
}
type channelIDs map[ChannelID]struct{}
func toChannelIDs(bytes []byte) channelIDs {
c := make(map[ChannelID]struct{}, len(bytes))
for _, b := range bytes {
c[ChannelID(b)] = struct{}{}
}
return c
}