package merkle
|
|
|
|
import (
|
|
"bytes"
|
|
"errors"
|
|
"fmt"
|
|
|
|
"github.com/tendermint/tendermint/crypto/tmhash"
|
|
tmcrypto "github.com/tendermint/tendermint/proto/tendermint/crypto"
|
|
)
|
|
|
|
const (
|
|
// MaxAunts is the maximum number of aunts that can be included in a Proof.
|
|
// This corresponds to a tree of size 2^100, which should be sufficient for all conceivable purposes.
|
|
// This maximum helps prevent Denial-of-Service attacks by limitting the size of the proofs.
|
|
MaxAunts = 100
|
|
)
|
|
|
|
// Proof represents a Merkle proof.
|
|
// NOTE: The convention for proofs is to include leaf hashes but to
|
|
// exclude the root hash.
|
|
// This convention is implemented across IAVL range proofs as well.
|
|
// Keep this consistent unless there's a very good reason to change
|
|
// everything. This also affects the generalized proof system as
|
|
// well.
|
|
type Proof struct {
|
|
Total int64 `json:"total"` // Total number of items.
|
|
Index int64 `json:"index"` // Index of item to prove.
|
|
LeafHash []byte `json:"leaf_hash"` // Hash of item value.
|
|
Aunts [][]byte `json:"aunts"` // Hashes from leaf's sibling to a root's child.
|
|
}
|
|
|
|
// ProofsFromByteSlices computes inclusion proof for given items.
|
|
// proofs[0] is the proof for items[0].
|
|
func ProofsFromByteSlices(items [][]byte) (rootHash []byte, proofs []*Proof) {
|
|
trails, rootSPN := trailsFromByteSlices(items)
|
|
rootHash = rootSPN.Hash
|
|
proofs = make([]*Proof, len(items))
|
|
for i, trail := range trails {
|
|
proofs[i] = &Proof{
|
|
Total: int64(len(items)),
|
|
Index: int64(i),
|
|
LeafHash: trail.Hash,
|
|
Aunts: trail.FlattenAunts(),
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// Verify that the Proof proves the root hash.
|
|
// Check sp.Index/sp.Total manually if needed
|
|
func (sp *Proof) Verify(rootHash []byte, leaf []byte) error {
|
|
leafHash := leafHash(leaf)
|
|
if sp.Total < 0 {
|
|
return errors.New("proof total must be positive")
|
|
}
|
|
if sp.Index < 0 {
|
|
return errors.New("proof index cannot be negative")
|
|
}
|
|
if !bytes.Equal(sp.LeafHash, leafHash) {
|
|
return fmt.Errorf("invalid leaf hash: wanted %X got %X", leafHash, sp.LeafHash)
|
|
}
|
|
computedHash := sp.ComputeRootHash()
|
|
if !bytes.Equal(computedHash, rootHash) {
|
|
return fmt.Errorf("invalid root hash: wanted %X got %X", rootHash, computedHash)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Compute the root hash given a leaf hash. Does not verify the result.
|
|
func (sp *Proof) ComputeRootHash() []byte {
|
|
return computeHashFromAunts(
|
|
sp.Index,
|
|
sp.Total,
|
|
sp.LeafHash,
|
|
sp.Aunts,
|
|
)
|
|
}
|
|
|
|
// String implements the stringer interface for Proof.
|
|
// It is a wrapper around StringIndented.
|
|
func (sp *Proof) String() string {
|
|
return sp.StringIndented("")
|
|
}
|
|
|
|
// StringIndented generates a canonical string representation of a Proof.
|
|
func (sp *Proof) StringIndented(indent string) string {
|
|
return fmt.Sprintf(`Proof{
|
|
%s Aunts: %X
|
|
%s}`,
|
|
indent, sp.Aunts,
|
|
indent)
|
|
}
|
|
|
|
// ValidateBasic performs basic validation.
|
|
// NOTE: it expects the LeafHash and the elements of Aunts to be of size tmhash.Size,
|
|
// and it expects at most MaxAunts elements in Aunts.
|
|
func (sp *Proof) ValidateBasic() error {
|
|
if sp.Total < 0 {
|
|
return errors.New("negative Total")
|
|
}
|
|
if sp.Index < 0 {
|
|
return errors.New("negative Index")
|
|
}
|
|
if len(sp.LeafHash) != tmhash.Size {
|
|
return fmt.Errorf("expected LeafHash size to be %d, got %d", tmhash.Size, len(sp.LeafHash))
|
|
}
|
|
if len(sp.Aunts) > MaxAunts {
|
|
return fmt.Errorf("expected no more than %d aunts, got %d", MaxAunts, len(sp.Aunts))
|
|
}
|
|
for i, auntHash := range sp.Aunts {
|
|
if len(auntHash) != tmhash.Size {
|
|
return fmt.Errorf("expected Aunts#%d size to be %d, got %d", i, tmhash.Size, len(auntHash))
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (sp *Proof) ToProto() *tmcrypto.Proof {
|
|
if sp == nil {
|
|
return nil
|
|
}
|
|
pb := new(tmcrypto.Proof)
|
|
|
|
pb.Total = sp.Total
|
|
pb.Index = sp.Index
|
|
pb.LeafHash = sp.LeafHash
|
|
pb.Aunts = sp.Aunts
|
|
|
|
return pb
|
|
}
|
|
|
|
func ProofFromProto(pb *tmcrypto.Proof) (*Proof, error) {
|
|
if pb == nil {
|
|
return nil, errors.New("nil proof")
|
|
}
|
|
|
|
sp := new(Proof)
|
|
|
|
sp.Total = pb.Total
|
|
sp.Index = pb.Index
|
|
sp.LeafHash = pb.LeafHash
|
|
sp.Aunts = pb.Aunts
|
|
|
|
return sp, sp.ValidateBasic()
|
|
}
|
|
|
|
// Use the leafHash and innerHashes to get the root merkle hash.
|
|
// If the length of the innerHashes slice isn't exactly correct, the result is nil.
|
|
// Recursive impl.
|
|
func computeHashFromAunts(index, total int64, leafHash []byte, innerHashes [][]byte) []byte {
|
|
if index >= total || index < 0 || total <= 0 {
|
|
return nil
|
|
}
|
|
switch total {
|
|
case 0:
|
|
panic("Cannot call computeHashFromAunts() with 0 total")
|
|
case 1:
|
|
if len(innerHashes) != 0 {
|
|
return nil
|
|
}
|
|
return leafHash
|
|
default:
|
|
if len(innerHashes) == 0 {
|
|
return nil
|
|
}
|
|
numLeft := getSplitPoint(total)
|
|
if index < numLeft {
|
|
leftHash := computeHashFromAunts(index, numLeft, leafHash, innerHashes[:len(innerHashes)-1])
|
|
if leftHash == nil {
|
|
return nil
|
|
}
|
|
return innerHash(leftHash, innerHashes[len(innerHashes)-1])
|
|
}
|
|
rightHash := computeHashFromAunts(index-numLeft, total-numLeft, leafHash, innerHashes[:len(innerHashes)-1])
|
|
if rightHash == nil {
|
|
return nil
|
|
}
|
|
return innerHash(innerHashes[len(innerHashes)-1], rightHash)
|
|
}
|
|
}
|
|
|
|
// ProofNode is a helper structure to construct merkle proof.
|
|
// The node and the tree is thrown away afterwards.
|
|
// Exactly one of node.Left and node.Right is nil, unless node is the root, in which case both are nil.
|
|
// node.Parent.Hash = hash(node.Hash, node.Right.Hash) or
|
|
// hash(node.Left.Hash, node.Hash), depending on whether node is a left/right child.
|
|
type ProofNode struct {
|
|
Hash []byte
|
|
Parent *ProofNode
|
|
Left *ProofNode // Left sibling (only one of Left,Right is set)
|
|
Right *ProofNode // Right sibling (only one of Left,Right is set)
|
|
}
|
|
|
|
// FlattenAunts will return the inner hashes for the item corresponding to the leaf,
|
|
// starting from a leaf ProofNode.
|
|
func (spn *ProofNode) FlattenAunts() [][]byte {
|
|
// Nonrecursive impl.
|
|
innerHashes := [][]byte{}
|
|
for spn != nil {
|
|
switch {
|
|
case spn.Left != nil:
|
|
innerHashes = append(innerHashes, spn.Left.Hash)
|
|
case spn.Right != nil:
|
|
innerHashes = append(innerHashes, spn.Right.Hash)
|
|
default:
|
|
break
|
|
}
|
|
spn = spn.Parent
|
|
}
|
|
return innerHashes
|
|
}
|
|
|
|
// trails[0].Hash is the leaf hash for items[0].
|
|
// trails[i].Parent.Parent....Parent == root for all i.
|
|
func trailsFromByteSlices(items [][]byte) (trails []*ProofNode, root *ProofNode) {
|
|
// Recursive impl.
|
|
switch len(items) {
|
|
case 0:
|
|
return []*ProofNode{}, &ProofNode{emptyHash(), nil, nil, nil}
|
|
case 1:
|
|
trail := &ProofNode{leafHash(items[0]), nil, nil, nil}
|
|
return []*ProofNode{trail}, trail
|
|
default:
|
|
k := getSplitPoint(int64(len(items)))
|
|
lefts, leftRoot := trailsFromByteSlices(items[:k])
|
|
rights, rightRoot := trailsFromByteSlices(items[k:])
|
|
rootHash := innerHash(leftRoot.Hash, rightRoot.Hash)
|
|
root := &ProofNode{rootHash, nil, nil, nil}
|
|
leftRoot.Parent = root
|
|
leftRoot.Right = rightRoot
|
|
rightRoot.Parent = root
|
|
rightRoot.Left = leftRoot
|
|
return append(lefts, rights...), root
|
|
}
|
|
}
|