package common
|
|
|
|
import (
|
|
crand "crypto/rand"
|
|
"encoding/hex"
|
|
"math/rand"
|
|
"time"
|
|
)
|
|
|
|
const (
|
|
strChars = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" // 62 characters
|
|
)
|
|
|
|
func init() {
|
|
// Seed math/rand with "secure" int64
|
|
b := CRandBytes(8)
|
|
var seed uint64
|
|
for i := 0; i < 8; i++ {
|
|
seed |= uint64(b[i])
|
|
seed <<= 8
|
|
}
|
|
rand.Seed(int64(seed))
|
|
}
|
|
|
|
// Constructs an alphanumeric string of given length.
|
|
func RandStr(length int) string {
|
|
chars := []byte{}
|
|
MAIN_LOOP:
|
|
for {
|
|
val := rand.Int63()
|
|
for i := 0; i < 10; i++ {
|
|
v := int(val & 0x3f) // rightmost 6 bits
|
|
if v >= 62 { // only 62 characters in strChars
|
|
val >>= 6
|
|
continue
|
|
} else {
|
|
chars = append(chars, strChars[v])
|
|
if len(chars) == length {
|
|
break MAIN_LOOP
|
|
}
|
|
val >>= 6
|
|
}
|
|
}
|
|
}
|
|
|
|
return string(chars)
|
|
}
|
|
|
|
func RandUint16() uint16 {
|
|
return uint16(rand.Uint32() & (1<<16 - 1))
|
|
}
|
|
|
|
func RandUint32() uint32 {
|
|
return rand.Uint32()
|
|
}
|
|
|
|
func RandUint64() uint64 {
|
|
return uint64(rand.Uint32())<<32 + uint64(rand.Uint32())
|
|
}
|
|
|
|
func RandUint() uint {
|
|
return uint(rand.Int())
|
|
}
|
|
|
|
func RandInt16() int16 {
|
|
return int16(rand.Uint32() & (1<<16 - 1))
|
|
}
|
|
|
|
func RandInt32() int32 {
|
|
return int32(rand.Uint32())
|
|
}
|
|
|
|
func RandInt64() int64 {
|
|
return int64(rand.Uint32())<<32 + int64(rand.Uint32())
|
|
}
|
|
|
|
func RandInt() int {
|
|
return rand.Int()
|
|
}
|
|
|
|
// Distributed pseudo-exponentially to test for various cases
|
|
func RandUint16Exp() uint16 {
|
|
bits := rand.Uint32() % 16
|
|
if bits == 0 {
|
|
return 0
|
|
}
|
|
n := uint16(1 << (bits - 1))
|
|
n += uint16(rand.Int31()) & ((1 << (bits - 1)) - 1)
|
|
return n
|
|
}
|
|
|
|
// Distributed pseudo-exponentially to test for various cases
|
|
func RandUint32Exp() uint32 {
|
|
bits := rand.Uint32() % 32
|
|
if bits == 0 {
|
|
return 0
|
|
}
|
|
n := uint32(1 << (bits - 1))
|
|
n += uint32(rand.Int31()) & ((1 << (bits - 1)) - 1)
|
|
return n
|
|
}
|
|
|
|
// Distributed pseudo-exponentially to test for various cases
|
|
func RandUint64Exp() uint64 {
|
|
bits := rand.Uint32() % 64
|
|
if bits == 0 {
|
|
return 0
|
|
}
|
|
n := uint64(1 << (bits - 1))
|
|
n += uint64(rand.Int63()) & ((1 << (bits - 1)) - 1)
|
|
return n
|
|
}
|
|
|
|
func RandFloat32() float32 {
|
|
return rand.Float32()
|
|
}
|
|
|
|
func RandTime() time.Time {
|
|
return time.Unix(int64(RandUint64Exp()), 0)
|
|
}
|
|
|
|
func RandBytes(n int) []byte {
|
|
bs := make([]byte, n)
|
|
for i := 0; i < n; i++ {
|
|
bs[i] = byte(rand.Intn(256))
|
|
}
|
|
return bs
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// CRand* methods are crypto safe.
|
|
|
|
func CRandBytes(numBytes int) []byte {
|
|
b := make([]byte, numBytes)
|
|
_, err := crand.Read(b)
|
|
if err != nil {
|
|
PanicCrisis(err)
|
|
}
|
|
return b
|
|
}
|
|
|
|
// RandHex(24) gives 96 bits of randomness, strong enough for most purposes.
|
|
func CRandHex(numDigits int) string {
|
|
return hex.EncodeToString(CRandBytes(numDigits / 2))
|
|
}
|