You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1047 lines
29 KiB

package p2p
import (
"context"
"fmt"
"io"
"math"
mrand "math/rand"
"net"
"sync"
"time"
"github.com/tendermint/tendermint/config"
"github.com/tendermint/tendermint/crypto"
"github.com/tendermint/tendermint/libs/cmap"
tmrand "github.com/tendermint/tendermint/libs/rand"
"github.com/tendermint/tendermint/libs/service"
"github.com/tendermint/tendermint/p2p/conn"
)
const (
// wait a random amount of time from this interval
// before dialing peers or reconnecting to help prevent DoS
dialRandomizerIntervalMilliseconds = 3000
// repeatedly try to reconnect for a few minutes
// ie. 5 * 20 = 100s
reconnectAttempts = 20
reconnectInterval = 5 * time.Second
// then move into exponential backoff mode for ~1day
// ie. 3**10 = 16hrs
reconnectBackOffAttempts = 10
reconnectBackOffBaseSeconds = 3
defaultFilterTimeout = 5 * time.Second
)
// MConnConfig returns an MConnConfig with fields updated
// from the P2PConfig.
func MConnConfig(cfg *config.P2PConfig) conn.MConnConfig {
mConfig := conn.DefaultMConnConfig()
mConfig.FlushThrottle = cfg.FlushThrottleTimeout
mConfig.SendRate = cfg.SendRate
mConfig.RecvRate = cfg.RecvRate
mConfig.MaxPacketMsgPayloadSize = cfg.MaxPacketMsgPayloadSize
return mConfig
}
//-----------------------------------------------------------------------------
// An AddrBook represents an address book from the pex package, which is used
// to store peer addresses.
type AddrBook interface {
AddAddress(addr *NetAddress, src *NetAddress) error
AddPrivateIDs([]string)
AddOurAddress(*NetAddress)
OurAddress(*NetAddress) bool
MarkGood(NodeID)
RemoveAddress(*NetAddress)
HasAddress(*NetAddress) bool
Save()
}
// ConnFilterFunc is a callback for connection filtering. If it returns an
// error, the connection is rejected. The set of existing connections is passed
// along with the new connection and all resolved IPs.
type ConnFilterFunc func(ConnSet, net.Conn, []net.IP) error
// PeerFilterFunc to be implemented by filter hooks after a new Peer has been
// fully setup.
type PeerFilterFunc func(IPeerSet, Peer) error
// ConnDuplicateIPFilter resolves and keeps all ips for an incoming connection
// and refuses new ones if they come from a known ip.
var ConnDuplicateIPFilter ConnFilterFunc = func(cs ConnSet, c net.Conn, ips []net.IP) error {
for _, ip := range ips {
if cs.HasIP(ip) {
return ErrRejected{
conn: c,
err: fmt.Errorf("ip<%v> already connected", ip),
isDuplicate: true,
}
}
}
return nil
}
//-----------------------------------------------------------------------------
// Switch handles peer connections and exposes an API to receive incoming messages
// on `Reactors`. Each `Reactor` is responsible for handling incoming messages of one
// or more `Channels`. So while sending outgoing messages is typically performed on the peer,
// incoming messages are received on the reactor.
type Switch struct {
service.BaseService
config *config.P2PConfig
reactors map[string]Reactor
chDescs []*conn.ChannelDescriptor
reactorsByCh map[byte]Reactor
peers *PeerSet
dialing *cmap.CMap
reconnecting *cmap.CMap
nodeInfo NodeInfo // our node info
nodeKey NodeKey // our node privkey
addrBook AddrBook
// peers addresses with whom we'll maintain constant connection
persistentPeersAddrs []*NetAddress
unconditionalPeerIDs map[NodeID]struct{}
transport Transport
filterTimeout time.Duration
peerFilters []PeerFilterFunc
connFilters []ConnFilterFunc
conns ConnSet
metrics *Metrics
}
// NetAddress returns the first address the switch is listening on,
// or nil if no addresses are found.
func (sw *Switch) NetAddress() *NetAddress {
endpoints := sw.transport.Endpoints()
if len(endpoints) == 0 {
return nil
}
return &NetAddress{
ID: sw.nodeInfo.NodeID,
IP: endpoints[0].IP,
Port: endpoints[0].Port,
}
}
// SwitchOption sets an optional parameter on the Switch.
type SwitchOption func(*Switch)
// NewSwitch creates a new Switch with the given config.
func NewSwitch(
cfg *config.P2PConfig,
transport Transport,
options ...SwitchOption,
) *Switch {
sw := &Switch{
config: cfg,
reactors: make(map[string]Reactor),
chDescs: make([]*conn.ChannelDescriptor, 0),
reactorsByCh: make(map[byte]Reactor),
peers: NewPeerSet(),
dialing: cmap.NewCMap(),
reconnecting: cmap.NewCMap(),
metrics: NopMetrics(),
transport: transport,
persistentPeersAddrs: make([]*NetAddress, 0),
unconditionalPeerIDs: make(map[NodeID]struct{}),
filterTimeout: defaultFilterTimeout,
conns: NewConnSet(),
}
// Ensure PRNG is reseeded.
tmrand.Reseed()
sw.BaseService = *service.NewBaseService(nil, "P2P Switch", sw)
for _, option := range options {
option(sw)
}
return sw
}
// SwitchFilterTimeout sets the timeout used for peer filters.
func SwitchFilterTimeout(timeout time.Duration) SwitchOption {
return func(sw *Switch) { sw.filterTimeout = timeout }
}
// SwitchPeerFilters sets the filters for rejection of new peers.
func SwitchPeerFilters(filters ...PeerFilterFunc) SwitchOption {
return func(sw *Switch) { sw.peerFilters = filters }
}
// SwitchConnFilters sets the filters for rejection of connections.
func SwitchConnFilters(filters ...ConnFilterFunc) SwitchOption {
return func(sw *Switch) { sw.connFilters = filters }
}
// WithMetrics sets the metrics.
func WithMetrics(metrics *Metrics) SwitchOption {
return func(sw *Switch) { sw.metrics = metrics }
}
//---------------------------------------------------------------------
// Switch setup
// AddReactor adds the given reactor to the switch.
// NOTE: Not goroutine safe.
func (sw *Switch) AddReactor(name string, reactor Reactor) Reactor {
for _, chDesc := range reactor.GetChannels() {
chID := chDesc.ID
// No two reactors can share the same channel.
if sw.reactorsByCh[chID] != nil {
panic(fmt.Sprintf("Channel %X has multiple reactors %v & %v", chID, sw.reactorsByCh[chID], reactor))
}
sw.chDescs = append(sw.chDescs, chDesc)
sw.reactorsByCh[chID] = reactor
}
sw.reactors[name] = reactor
reactor.SetSwitch(sw)
return reactor
}
// RemoveReactor removes the given Reactor from the Switch.
// NOTE: Not goroutine safe.
func (sw *Switch) RemoveReactor(name string, reactor Reactor) {
for _, chDesc := range reactor.GetChannels() {
// remove channel description
for i := 0; i < len(sw.chDescs); i++ {
if chDesc.ID == sw.chDescs[i].ID {
sw.chDescs = append(sw.chDescs[:i], sw.chDescs[i+1:]...)
break
}
}
delete(sw.reactorsByCh, chDesc.ID)
}
delete(sw.reactors, name)
reactor.SetSwitch(nil)
}
// Reactors returns a map of reactors registered on the switch.
// NOTE: Not goroutine safe.
func (sw *Switch) Reactors() map[string]Reactor {
return sw.reactors
}
// Reactor returns the reactor with the given name.
// NOTE: Not goroutine safe.
func (sw *Switch) Reactor(name string) Reactor {
return sw.reactors[name]
}
// SetNodeInfo sets the switch's NodeInfo for checking compatibility and handshaking with other nodes.
// NOTE: Not goroutine safe.
func (sw *Switch) SetNodeInfo(nodeInfo NodeInfo) {
sw.nodeInfo = nodeInfo
}
// NodeInfo returns the switch's NodeInfo.
// NOTE: Not goroutine safe.
func (sw *Switch) NodeInfo() NodeInfo {
return sw.nodeInfo
}
// SetNodeKey sets the switch's private key for authenticated encryption.
// NOTE: Not goroutine safe.
func (sw *Switch) SetNodeKey(nodeKey NodeKey) {
sw.nodeKey = nodeKey
}
//---------------------------------------------------------------------
// Service start/stop
// OnStart implements BaseService. It starts all the reactors and peers.
func (sw *Switch) OnStart() error {
// FIXME: Temporary hack to pass channel descriptors to MConn transport,
// since they are not available when it is constructed. This will be
// fixed when we implement the new router abstraction.
if t, ok := sw.transport.(*MConnTransport); ok {
t.channelDescs = sw.chDescs
}
// Start reactors
for _, reactor := range sw.reactors {
err := reactor.Start()
if err != nil {
return fmt.Errorf("failed to start %v: %w", reactor, err)
}
}
// Start accepting Peers.
go sw.acceptRoutine()
return nil
}
// OnStop implements BaseService. It stops all peers and reactors.
func (sw *Switch) OnStop() {
// Stop peers
for _, p := range sw.peers.List() {
sw.stopAndRemovePeer(p, nil)
}
// Stop reactors
sw.Logger.Debug("Switch: Stopping reactors")
for _, reactor := range sw.reactors {
if err := reactor.Stop(); err != nil {
sw.Logger.Error("error while stopping reactor", "reactor", reactor, "error", err)
}
}
}
//---------------------------------------------------------------------
// Peers
// Broadcast runs a go routine for each attempted send, which will block trying
// to send for defaultSendTimeoutSeconds. Returns a channel which receives
// success values for each attempted send (false if times out). Channel will be
// closed once msg bytes are sent to all peers (or time out).
//
// NOTE: Broadcast uses goroutines, so order of broadcast may not be preserved.
func (sw *Switch) Broadcast(chID byte, msgBytes []byte) chan bool {
sw.Logger.Debug("Broadcast", "channel", chID, "msgBytes", msgBytes)
peers := sw.peers.List()
var wg sync.WaitGroup
wg.Add(len(peers))
successChan := make(chan bool, len(peers))
for _, peer := range peers {
go func(p Peer) {
defer wg.Done()
success := p.Send(chID, msgBytes)
successChan <- success
}(peer)
}
go func() {
wg.Wait()
close(successChan)
}()
return successChan
}
// NumPeers returns the count of outbound/inbound and outbound-dialing peers.
// unconditional peers are not counted here.
func (sw *Switch) NumPeers() (outbound, inbound, dialing int) {
peers := sw.peers.List()
for _, peer := range peers {
if peer.IsOutbound() {
if !sw.IsPeerUnconditional(peer.ID()) {
outbound++
}
} else {
if !sw.IsPeerUnconditional(peer.ID()) {
inbound++
}
}
}
dialing = sw.dialing.Size()
return
}
func (sw *Switch) IsPeerUnconditional(id NodeID) bool {
_, ok := sw.unconditionalPeerIDs[id]
return ok
}
// MaxNumOutboundPeers returns a maximum number of outbound peers.
func (sw *Switch) MaxNumOutboundPeers() int {
return sw.config.MaxNumOutboundPeers
}
// Peers returns the set of peers that are connected to the switch.
func (sw *Switch) Peers() IPeerSet {
return sw.peers
}
// StopPeerForError disconnects from a peer due to external error.
// If the peer is persistent, it will attempt to reconnect.
// TODO: make record depending on reason.
func (sw *Switch) StopPeerForError(peer Peer, reason interface{}) {
if !peer.IsRunning() {
return
}
sw.Logger.Error("Stopping peer for error", "peer", peer, "err", reason)
sw.stopAndRemovePeer(peer, reason)
if peer.IsPersistent() {
var addr *NetAddress
if peer.IsOutbound() { // socket address for outbound peers
addr = peer.SocketAddr()
} else { // self-reported address for inbound peers
var err error
addr, err = peer.NodeInfo().NetAddress()
if err != nil {
sw.Logger.Error("Wanted to reconnect to inbound peer, but self-reported address is wrong",
"peer", peer, "err", err)
return
}
}
go sw.reconnectToPeer(addr)
}
}
// StopPeerGracefully disconnects from a peer gracefully.
// TODO: handle graceful disconnects.
func (sw *Switch) StopPeerGracefully(peer Peer) {
sw.Logger.Info("Stopping peer gracefully")
sw.stopAndRemovePeer(peer, nil)
}
func (sw *Switch) stopAndRemovePeer(peer Peer, reason interface{}) {
if err := peer.Stop(); err != nil {
sw.Logger.Error("error while stopping peer", "error", err) // TODO: should return error to be handled accordingly
}
for _, reactor := range sw.reactors {
reactor.RemovePeer(peer, reason)
}
// Removing a peer should go last to avoid a situation where a peer
// reconnect to our node and the switch calls InitPeer before
// RemovePeer is finished.
// https://github.com/tendermint/tendermint/issues/3338
if sw.peers.Remove(peer) {
sw.metrics.Peers.Add(float64(-1))
}
sw.conns.RemoveAddr(peer.RemoteAddr())
}
// reconnectToPeer tries to reconnect to the addr, first repeatedly
// with a fixed interval, then with exponential backoff.
// If no success after all that, it stops trying, and leaves it
// to the PEX/Addrbook to find the peer with the addr again
// NOTE: this will keep trying even if the handshake or auth fails.
// TODO: be more explicit with error types so we only retry on certain failures
// - ie. if we're getting ErrDuplicatePeer we can stop
// because the addrbook got us the peer back already
func (sw *Switch) reconnectToPeer(addr *NetAddress) {
if sw.reconnecting.Has(string(addr.ID)) {
return
}
sw.reconnecting.Set(string(addr.ID), addr)
defer sw.reconnecting.Delete(string(addr.ID))
start := time.Now()
sw.Logger.Info("Reconnecting to peer", "addr", addr)
for i := 0; i < reconnectAttempts; i++ {
if !sw.IsRunning() {
return
}
err := sw.DialPeerWithAddress(addr)
if err == nil {
return // success
} else if _, ok := err.(ErrCurrentlyDialingOrExistingAddress); ok {
return
}
sw.Logger.Info("Error reconnecting to peer. Trying again", "tries", i, "err", err, "addr", addr)
// sleep a set amount
sw.randomSleep(reconnectInterval)
continue
}
sw.Logger.Error("Failed to reconnect to peer. Beginning exponential backoff",
"addr", addr, "elapsed", time.Since(start))
for i := 0; i < reconnectBackOffAttempts; i++ {
if !sw.IsRunning() {
return
}
// sleep an exponentially increasing amount
sleepIntervalSeconds := math.Pow(reconnectBackOffBaseSeconds, float64(i))
sw.randomSleep(time.Duration(sleepIntervalSeconds) * time.Second)
err := sw.DialPeerWithAddress(addr)
if err == nil {
return // success
} else if _, ok := err.(ErrCurrentlyDialingOrExistingAddress); ok {
return
}
sw.Logger.Info("Error reconnecting to peer. Trying again", "tries", i, "err", err, "addr", addr)
}
sw.Logger.Error("Failed to reconnect to peer. Giving up", "addr", addr, "elapsed", time.Since(start))
}
// SetAddrBook allows to set address book on Switch.
func (sw *Switch) SetAddrBook(addrBook AddrBook) {
sw.addrBook = addrBook
}
// MarkPeerAsGood marks the given peer as good when it did something useful
// like contributed to consensus.
func (sw *Switch) MarkPeerAsGood(peer Peer) {
if sw.addrBook != nil {
sw.addrBook.MarkGood(peer.ID())
}
}
//---------------------------------------------------------------------
// Dialing
type privateAddr interface {
PrivateAddr() bool
}
func isPrivateAddr(err error) bool {
te, ok := err.(privateAddr)
return ok && te.PrivateAddr()
}
// DialPeersAsync dials a list of peers asynchronously in random order.
// Used to dial peers from config on startup or from unsafe-RPC (trusted sources).
// It ignores ErrNetAddressLookup. However, if there are other errors, first
// encounter is returned.
// Nop if there are no peers.
func (sw *Switch) DialPeersAsync(peers []string) error {
netAddrs, errs := NewNetAddressStrings(peers)
// report all the errors
for _, err := range errs {
sw.Logger.Error("Error in peer's address", "err", err)
}
// return first non-ErrNetAddressLookup error
for _, err := range errs {
if _, ok := err.(ErrNetAddressLookup); ok {
continue
}
return err
}
sw.dialPeersAsync(netAddrs)
return nil
}
func (sw *Switch) dialPeersAsync(netAddrs []*NetAddress) {
ourAddr := sw.NetAddress()
// TODO: this code feels like it's in the wrong place.
// The integration tests depend on the addrBook being saved
// right away but maybe we can change that. Recall that
// the addrBook is only written to disk every 2min
if sw.addrBook != nil {
// add peers to `addrBook`
for _, netAddr := range netAddrs {
// do not add our address or ID
if !netAddr.Same(ourAddr) {
if err := sw.addrBook.AddAddress(netAddr, ourAddr); err != nil {
if isPrivateAddr(err) {
sw.Logger.Debug("Won't add peer's address to addrbook", "err", err)
} else {
sw.Logger.Error("Can't add peer's address to addrbook", "err", err)
}
}
}
}
// Persist some peers to disk right away.
// NOTE: integration tests depend on this
sw.addrBook.Save()
}
// permute the list, dial them in random order.
perm := mrand.Perm(len(netAddrs))
for i := 0; i < len(perm); i++ {
go func(i int) {
j := perm[i]
addr := netAddrs[j]
if addr.Same(ourAddr) {
sw.Logger.Debug("Ignore attempt to connect to ourselves", "addr", addr, "ourAddr", ourAddr)
return
}
sw.randomSleep(0)
err := sw.DialPeerWithAddress(addr)
if err != nil {
switch err.(type) {
case ErrSwitchConnectToSelf, ErrSwitchDuplicatePeerID, ErrCurrentlyDialingOrExistingAddress:
sw.Logger.Debug("Error dialing peer", "err", err)
default:
sw.Logger.Error("Error dialing peer", "err", err)
}
}
}(i)
}
}
// DialPeerWithAddress dials the given peer and runs sw.addPeer if it connects
// and authenticates successfully.
// If we're currently dialing this address or it belongs to an existing peer,
// ErrCurrentlyDialingOrExistingAddress is returned.
func (sw *Switch) DialPeerWithAddress(addr *NetAddress) error {
if sw.IsDialingOrExistingAddress(addr) {
return ErrCurrentlyDialingOrExistingAddress{addr.String()}
}
sw.dialing.Set(string(addr.ID), addr)
defer sw.dialing.Delete(string(addr.ID))
return sw.addOutboundPeerWithConfig(addr, sw.config)
}
// sleep for interval plus some random amount of ms on [0, dialRandomizerIntervalMilliseconds]
func (sw *Switch) randomSleep(interval time.Duration) {
// nolint:gosec // G404: Use of weak random number generator
r := time.Duration(mrand.Int63n(dialRandomizerIntervalMilliseconds)) * time.Millisecond
time.Sleep(r + interval)
}
// IsDialingOrExistingAddress returns true if switch has a peer with the given
// address or dialing it at the moment.
func (sw *Switch) IsDialingOrExistingAddress(addr *NetAddress) bool {
return sw.dialing.Has(string(addr.ID)) ||
sw.peers.Has(addr.ID) ||
(!sw.config.AllowDuplicateIP && sw.peers.HasIP(addr.IP))
}
// AddPersistentPeers allows you to set persistent peers. It ignores
// ErrNetAddressLookup. However, if there are other errors, first encounter is
// returned.
func (sw *Switch) AddPersistentPeers(addrs []string) error {
sw.Logger.Info("Adding persistent peers", "addrs", addrs)
netAddrs, errs := NewNetAddressStrings(addrs)
// report all the errors
for _, err := range errs {
sw.Logger.Error("Error in peer's address", "err", err)
}
// return first non-ErrNetAddressLookup error
for _, err := range errs {
if _, ok := err.(ErrNetAddressLookup); ok {
continue
}
return err
}
sw.persistentPeersAddrs = netAddrs
return nil
}
func (sw *Switch) AddUnconditionalPeerIDs(ids []string) error {
sw.Logger.Info("Adding unconditional peer ids", "ids", ids)
for i, id := range ids {
err := NodeID(id).Validate()
if err != nil {
return fmt.Errorf("wrong ID #%d: %w", i, err)
}
sw.unconditionalPeerIDs[NodeID(id)] = struct{}{}
}
return nil
}
func (sw *Switch) AddPrivatePeerIDs(ids []string) error {
validIDs := make([]string, 0, len(ids))
for i, id := range ids {
err := NodeID(id).Validate()
if err != nil {
return fmt.Errorf("wrong ID #%d: %w", i, err)
}
validIDs = append(validIDs, id)
}
sw.addrBook.AddPrivateIDs(validIDs)
return nil
}
func (sw *Switch) IsPeerPersistent(na *NetAddress) bool {
for _, pa := range sw.persistentPeersAddrs {
if pa.Equals(na) {
return true
}
}
return false
}
func (sw *Switch) acceptRoutine() {
for {
var peerNodeInfo NodeInfo
c, err := sw.transport.Accept()
if err == nil {
// NOTE: The legacy MConn transport did handshaking in Accept(),
// which was asynchronous and avoided head-of-line-blocking.
// However, as handshakes are being migrated out from the transport,
// we just do it synchronously here for now.
peerNodeInfo, _, err = sw.handshakePeer(c, "")
}
if err == nil {
err = sw.filterConn(c.(*mConnConnection).conn)
}
if err != nil {
if c != nil {
_ = c.Close()
}
if err == io.EOF {
err = ErrTransportClosed{}
}
switch err := err.(type) {
case ErrRejected:
if err.IsSelf() {
// Remove the given address from the address book and add to our addresses
// to avoid dialing in the future.
addr := err.Addr()
sw.addrBook.RemoveAddress(&addr)
sw.addrBook.AddOurAddress(&addr)
}
sw.Logger.Info(
"Inbound Peer rejected",
"err", err,
"numPeers", sw.peers.Size(),
)
continue
case ErrFilterTimeout:
sw.Logger.Error(
"Peer filter timed out",
"err", err,
)
continue
case ErrTransportClosed:
sw.Logger.Error(
"Stopped accept routine, as transport is closed",
"numPeers", sw.peers.Size(),
)
default:
sw.Logger.Error(
"Accept on transport errored",
"err", err,
"numPeers", sw.peers.Size(),
)
// We could instead have a retry loop around the acceptRoutine,
// but that would need to stop and let the node shutdown eventually.
// So might as well panic and let process managers restart the node.
// There's no point in letting the node run without the acceptRoutine,
// since it won't be able to accept new connections.
panic(fmt.Errorf("accept routine exited: %v", err))
}
break
}
isPersistent := false
addr, err := peerNodeInfo.NetAddress()
if err == nil {
isPersistent = sw.IsPeerPersistent(addr)
}
p := newPeer(
peerNodeInfo,
newPeerConn(false, isPersistent, c),
sw.reactorsByCh,
sw.StopPeerForError,
PeerMetrics(sw.metrics),
)
if !sw.IsPeerUnconditional(p.NodeInfo().ID()) {
// Ignore connection if we already have enough peers.
_, in, _ := sw.NumPeers()
if in >= sw.config.MaxNumInboundPeers {
sw.Logger.Info(
"Ignoring inbound connection: already have enough inbound peers",
"address", p.SocketAddr(),
"have", in,
"max", sw.config.MaxNumInboundPeers,
)
_ = p.CloseConn()
continue
}
}
if err := sw.addPeer(p); err != nil {
_ = p.CloseConn()
if p.IsRunning() {
_ = p.Stop()
}
sw.conns.RemoveAddr(p.RemoteAddr())
sw.Logger.Info(
"Ignoring inbound connection: error while adding peer",
"err", err,
"id", p.ID(),
)
}
}
}
// dial the peer; make secret connection; authenticate against the dialed ID;
// add the peer.
// if dialing fails, start the reconnect loop. If handshake fails, it's over.
// If peer is started successfully, reconnectLoop will start when
// StopPeerForError is called.
func (sw *Switch) addOutboundPeerWithConfig(
addr *NetAddress,
cfg *config.P2PConfig,
) error {
sw.Logger.Info("Dialing peer", "address", addr)
// XXX(xla): Remove the leakage of test concerns in implementation.
if cfg.TestDialFail {
go sw.reconnectToPeer(addr)
return fmt.Errorf("dial err (peerConfig.DialFail == true)")
}
// Hardcoded timeout moved from MConn transport during refactoring.
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
var peerNodeInfo NodeInfo
c, err := sw.transport.Dial(ctx, Endpoint{
Protocol: MConnProtocol,
IP: addr.IP,
Port: addr.Port,
})
if err == nil {
peerNodeInfo, _, err = sw.handshakePeer(c, addr.ID)
}
if err == nil {
err = sw.filterConn(c.(*mConnConnection).conn)
}
if err != nil {
if c != nil {
_ = c.Close()
}
if e, ok := err.(ErrRejected); ok {
if e.IsSelf() {
// Remove the given address from the address book and add to our addresses
// to avoid dialing in the future.
sw.addrBook.RemoveAddress(addr)
sw.addrBook.AddOurAddress(addr)
return err
}
}
// retry persistent peers after
// any dial error besides IsSelf()
if sw.IsPeerPersistent(addr) {
go sw.reconnectToPeer(addr)
}
return err
}
p := newPeer(
peerNodeInfo,
newPeerConn(true, sw.IsPeerPersistent(addr), c),
sw.reactorsByCh,
sw.StopPeerForError,
PeerMetrics(sw.metrics),
)
if err := sw.addPeer(p); err != nil {
_ = p.CloseConn()
if p.IsRunning() {
_ = p.Stop()
}
sw.conns.RemoveAddr(p.RemoteAddr())
return err
}
return nil
}
func (sw *Switch) handshakePeer(c Connection, expectPeerID NodeID) (NodeInfo, crypto.PubKey, error) {
// Moved from transport and hardcoded until legacy P2P stack removal.
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
peerInfo, peerKey, err := c.Handshake(ctx, sw.nodeInfo, sw.nodeKey.PrivKey)
if err != nil {
return peerInfo, peerKey, ErrRejected{
conn: c.(*mConnConnection).conn,
err: fmt.Errorf("handshake failed: %v", err),
isAuthFailure: true,
}
}
if err = peerInfo.Validate(); err != nil {
return peerInfo, peerKey, ErrRejected{
conn: c.(*mConnConnection).conn,
err: err,
isNodeInfoInvalid: true,
}
}
// For outgoing conns, ensure connection key matches dialed key.
if expectPeerID != "" {
peerID := NodeIDFromPubKey(peerKey)
if expectPeerID != peerID {
return peerInfo, peerKey, ErrRejected{
conn: c.(*mConnConnection).conn,
id: peerID,
err: fmt.Errorf(
"conn.ID (%v) dialed ID (%v) mismatch",
peerID,
expectPeerID,
),
isAuthFailure: true,
}
}
}
if sw.nodeInfo.ID() == peerInfo.ID() {
return peerInfo, peerKey, ErrRejected{
addr: *NewNetAddress(peerInfo.ID(), c.(*mConnConnection).conn.RemoteAddr()),
conn: c.(*mConnConnection).conn,
id: peerInfo.ID(),
isSelf: true,
}
}
if err = sw.nodeInfo.CompatibleWith(peerInfo); err != nil {
return peerInfo, peerKey, ErrRejected{
conn: c.(*mConnConnection).conn,
err: err,
id: peerInfo.ID(),
isIncompatible: true,
}
}
return peerInfo, peerKey, nil
}
func (sw *Switch) filterPeer(p Peer) error {
// Avoid duplicate
if sw.peers.Has(p.ID()) {
return ErrRejected{id: p.ID(), isDuplicate: true}
}
errc := make(chan error, len(sw.peerFilters))
for _, f := range sw.peerFilters {
go func(f PeerFilterFunc, p Peer, errc chan<- error) {
errc <- f(sw.peers, p)
}(f, p, errc)
}
for i := 0; i < cap(errc); i++ {
select {
case err := <-errc:
if err != nil {
return ErrRejected{id: p.ID(), err: err, isFiltered: true}
}
case <-time.After(sw.filterTimeout):
return ErrFilterTimeout{}
}
}
return nil
}
// filterConn filters a connection, rejecting it if this function errors.
//
// FIXME: This is only here for compatibility with the current Switch code. In
// the new P2P stack, peer/connection filtering should be moved into the Router
// or PeerManager and removed from here.
func (sw *Switch) filterConn(conn net.Conn) error {
if sw.conns.Has(conn) {
return ErrRejected{conn: conn, isDuplicate: true}
}
host, _, err := net.SplitHostPort(conn.RemoteAddr().String())
if err != nil {
return err
}
ip := net.ParseIP(host)
if ip == nil {
return fmt.Errorf("connection address has invalid IP address %q", host)
}
// Apply filter callbacks.
chErr := make(chan error, len(sw.connFilters))
for _, connFilter := range sw.connFilters {
go func(connFilter ConnFilterFunc) {
chErr <- connFilter(sw.conns, conn, []net.IP{ip})
}(connFilter)
}
for i := 0; i < cap(chErr); i++ {
select {
case err := <-chErr:
if err != nil {
return ErrRejected{conn: conn, err: err, isFiltered: true}
}
case <-time.After(sw.filterTimeout):
return ErrFilterTimeout{}
}
}
// FIXME: Doesn't really make sense to set this here, but we preserve the
// behavior from the previous P2P transport implementation.
sw.conns.Set(conn, []net.IP{ip})
return nil
}
// addPeer starts up the Peer and adds it to the Switch. Error is returned if
// the peer is filtered out or failed to start or can't be added.
func (sw *Switch) addPeer(p Peer) error {
if err := sw.filterPeer(p); err != nil {
return err
}
p.SetLogger(sw.Logger.With("peer", p.SocketAddr()))
// Handle the shut down case where the switch has stopped but we're
// concurrently trying to add a peer.
if !sw.IsRunning() {
// XXX should this return an error or just log and terminate?
sw.Logger.Error("Won't start a peer - switch is not running", "peer", p)
return nil
}
// Add some data to the peer, which is required by reactors.
for _, reactor := range sw.reactors {
p = reactor.InitPeer(p)
}
// Start the peer's send/recv routines.
// Must start it before adding it to the peer set
// to prevent Start and Stop from being called concurrently.
err := p.Start()
if err != nil {
// Should never happen
sw.Logger.Error("Error starting peer", "err", err, "peer", p)
return err
}
// Add the peer to PeerSet. Do this before starting the reactors
// so that if Receive errors, we will find the peer and remove it.
// Add should not err since we already checked peers.Has().
if err := sw.peers.Add(p); err != nil {
return err
}
sw.metrics.Peers.Add(float64(1))
// Start all the reactor protocols on the peer.
for _, reactor := range sw.reactors {
reactor.AddPeer(p)
}
sw.Logger.Info("Added peer", "peer", p)
return nil
}
// FIXME: Eww, needed to wire up the new P2P stack along with the old one. This
// should be passed into the transport when it's constructed.
func (sw *Switch) PutChannelDescsIntoTransport() {
if t, ok := sw.transport.(*MConnTransport); ok {
t.channelDescs = sw.chDescs
}
}