You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

844 lines
23 KiB

package conn
import (
"bufio"
"errors"
"fmt"
"io"
"math"
"net"
"reflect"
"sync/atomic"
"time"
amino "github.com/tendermint/go-amino"
cmn "github.com/tendermint/tendermint/libs/common"
flow "github.com/tendermint/tendermint/libs/flowrate"
"github.com/tendermint/tendermint/libs/log"
)
const (
defaultMaxPacketMsgPayloadSize = 1024
numBatchPacketMsgs = 10
minReadBufferSize = 1024
minWriteBufferSize = 65536
updateStats = 2 * time.Second
// some of these defaults are written in the user config
// flushThrottle, sendRate, recvRate
// TODO: remove values present in config
defaultFlushThrottle = 100 * time.Millisecond
defaultSendQueueCapacity = 1
defaultRecvBufferCapacity = 4096
defaultRecvMessageCapacity = 22020096 // 21MB
defaultSendRate = int64(512000) // 500KB/s
defaultRecvRate = int64(512000) // 500KB/s
defaultSendTimeout = 10 * time.Second
defaultPingInterval = 60 * time.Second
defaultPongTimeout = 45 * time.Second
)
type receiveCbFunc func(chID byte, msgBytes []byte)
type errorCbFunc func(interface{})
/*
Each peer has one `MConnection` (multiplex connection) instance.
__multiplex__ *noun* a system or signal involving simultaneous transmission of
several messages along a single channel of communication.
Each `MConnection` handles message transmission on multiple abstract communication
`Channel`s. Each channel has a globally unique byte id.
The byte id and the relative priorities of each `Channel` are configured upon
initialization of the connection.
There are two methods for sending messages:
func (m MConnection) Send(chID byte, msgBytes []byte) bool {}
func (m MConnection) TrySend(chID byte, msgBytes []byte}) bool {}
`Send(chID, msgBytes)` is a blocking call that waits until `msg` is
successfully queued for the channel with the given id byte `chID`, or until the
request times out. The message `msg` is serialized using Go-Amino.
`TrySend(chID, msgBytes)` is a nonblocking call that returns false if the
channel's queue is full.
Inbound message bytes are handled with an onReceive callback function.
*/
type MConnection struct {
cmn.BaseService
conn net.Conn
bufConnReader *bufio.Reader
bufConnWriter *bufio.Writer
sendMonitor *flow.Monitor
recvMonitor *flow.Monitor
send chan struct{}
pong chan struct{}
channels []*Channel
channelsIdx map[byte]*Channel
onReceive receiveCbFunc
onError errorCbFunc
errored uint32
config MConnConfig
// Closing quitSendRoutine will cause
// doneSendRoutine to close.
quitSendRoutine chan struct{}
doneSendRoutine chan struct{}
flushTimer *cmn.ThrottleTimer // flush writes as necessary but throttled.
pingTimer *cmn.RepeatTimer // send pings periodically
// close conn if pong is not received in pongTimeout
pongTimer *time.Timer
pongTimeoutCh chan bool // true - timeout, false - peer sent pong
chStatsTimer *cmn.RepeatTimer // update channel stats periodically
created time.Time // time of creation
_maxPacketMsgSize int
}
// MConnConfig is a MConnection configuration.
type MConnConfig struct {
SendRate int64 `mapstructure:"send_rate"`
RecvRate int64 `mapstructure:"recv_rate"`
// Maximum payload size
MaxPacketMsgPayloadSize int `mapstructure:"max_packet_msg_payload_size"`
// Interval to flush writes (throttled)
FlushThrottle time.Duration `mapstructure:"flush_throttle"`
// Interval to send pings
PingInterval time.Duration `mapstructure:"ping_interval"`
// Maximum wait time for pongs
PongTimeout time.Duration `mapstructure:"pong_timeout"`
}
// DefaultMConnConfig returns the default config.
func DefaultMConnConfig() MConnConfig {
return MConnConfig{
SendRate: defaultSendRate,
RecvRate: defaultRecvRate,
MaxPacketMsgPayloadSize: defaultMaxPacketMsgPayloadSize,
FlushThrottle: defaultFlushThrottle,
PingInterval: defaultPingInterval,
PongTimeout: defaultPongTimeout,
}
}
// NewMConnection wraps net.Conn and creates multiplex connection
func NewMConnection(conn net.Conn, chDescs []*ChannelDescriptor, onReceive receiveCbFunc, onError errorCbFunc) *MConnection {
return NewMConnectionWithConfig(
conn,
chDescs,
onReceive,
onError,
DefaultMConnConfig())
}
// NewMConnectionWithConfig wraps net.Conn and creates multiplex connection with a config
func NewMConnectionWithConfig(conn net.Conn, chDescs []*ChannelDescriptor, onReceive receiveCbFunc, onError errorCbFunc, config MConnConfig) *MConnection {
if config.PongTimeout >= config.PingInterval {
panic("pongTimeout must be less than pingInterval (otherwise, next ping will reset pong timer)")
}
mconn := &MConnection{
conn: conn,
bufConnReader: bufio.NewReaderSize(conn, minReadBufferSize),
bufConnWriter: bufio.NewWriterSize(conn, minWriteBufferSize),
sendMonitor: flow.New(0, 0),
recvMonitor: flow.New(0, 0),
send: make(chan struct{}, 1),
pong: make(chan struct{}, 1),
onReceive: onReceive,
onError: onError,
config: config,
}
// Create channels
var channelsIdx = map[byte]*Channel{}
var channels = []*Channel{}
for _, desc := range chDescs {
channel := newChannel(mconn, *desc)
channelsIdx[channel.desc.ID] = channel
channels = append(channels, channel)
}
mconn.channels = channels
mconn.channelsIdx = channelsIdx
mconn.BaseService = *cmn.NewBaseService(nil, "MConnection", mconn)
// maxPacketMsgSize() is a bit heavy, so call just once
mconn._maxPacketMsgSize = mconn.maxPacketMsgSize()
return mconn
}
func (c *MConnection) SetLogger(l log.Logger) {
c.BaseService.SetLogger(l)
for _, ch := range c.channels {
ch.SetLogger(l)
}
}
// OnStart implements BaseService
func (c *MConnection) OnStart() error {
if err := c.BaseService.OnStart(); err != nil {
return err
}
c.quitSendRoutine = make(chan struct{})
c.doneSendRoutine = make(chan struct{})
c.flushTimer = cmn.NewThrottleTimer("flush", c.config.FlushThrottle)
c.pingTimer = cmn.NewRepeatTimer("ping", c.config.PingInterval)
c.pongTimeoutCh = make(chan bool, 1)
c.chStatsTimer = cmn.NewRepeatTimer("chStats", updateStats)
go c.sendRoutine()
go c.recvRoutine()
return nil
}
// FlushStop replicates the logic of OnStop.
// It additionally ensures that all successful
// .Send() calls will get flushed before closing
// the connection.
// NOTE: it is not safe to call this method more than once.
func (c *MConnection) FlushStop() {
c.BaseService.OnStop()
c.flushTimer.Stop()
c.pingTimer.Stop()
c.chStatsTimer.Stop()
if c.quitSendRoutine != nil {
close(c.quitSendRoutine)
// wait until the sendRoutine exits
// so we dont race on calling sendSomePacketMsgs
<-c.doneSendRoutine
}
// Send and flush all pending msgs.
// By now, IsRunning == false,
// so any concurrent attempts to send will fail.
// Since sendRoutine has exited, we can call this
// safely
eof := c.sendSomePacketMsgs()
for !eof {
eof = c.sendSomePacketMsgs()
}
c.flush()
// Now we can close the connection
c.conn.Close() // nolint: errcheck
// We can't close pong safely here because
// recvRoutine may write to it after we've stopped.
// Though it doesn't need to get closed at all,
// we close it @ recvRoutine.
// c.Stop()
}
// OnStop implements BaseService
func (c *MConnection) OnStop() {
select {
case <-c.quitSendRoutine:
// already quit via FlushStop
return
default:
}
c.BaseService.OnStop()
c.flushTimer.Stop()
c.pingTimer.Stop()
c.chStatsTimer.Stop()
close(c.quitSendRoutine)
c.conn.Close() // nolint: errcheck
// We can't close pong safely here because
// recvRoutine may write to it after we've stopped.
// Though it doesn't need to get closed at all,
// we close it @ recvRoutine.
}
func (c *MConnection) String() string {
return fmt.Sprintf("MConn{%v}", c.conn.RemoteAddr())
}
func (c *MConnection) flush() {
c.Logger.Debug("Flush", "conn", c)
err := c.bufConnWriter.Flush()
if err != nil {
c.Logger.Error("MConnection flush failed", "err", err)
}
}
// Catch panics, usually caused by remote disconnects.
func (c *MConnection) _recover() {
if r := recover(); r != nil {
err := cmn.ErrorWrap(r, "recovered panic in MConnection")
c.stopForError(err)
}
}
func (c *MConnection) stopForError(r interface{}) {
c.Stop()
if atomic.CompareAndSwapUint32(&c.errored, 0, 1) {
if c.onError != nil {
c.onError(r)
}
}
}
// Queues a message to be sent to channel.
func (c *MConnection) Send(chID byte, msgBytes []byte) bool {
if !c.IsRunning() {
return false
}
c.Logger.Debug("Send", "channel", chID, "conn", c, "msgBytes", fmt.Sprintf("%X", msgBytes))
// Send message to channel.
channel, ok := c.channelsIdx[chID]
if !ok {
c.Logger.Error(fmt.Sprintf("Cannot send bytes, unknown channel %X", chID))
return false
}
success := channel.sendBytes(msgBytes)
if success {
// Wake up sendRoutine if necessary
select {
case c.send <- struct{}{}:
default:
}
} else {
c.Logger.Debug("Send failed", "channel", chID, "conn", c, "msgBytes", fmt.Sprintf("%X", msgBytes))
}
return success
}
// Queues a message to be sent to channel.
// Nonblocking, returns true if successful.
func (c *MConnection) TrySend(chID byte, msgBytes []byte) bool {
if !c.IsRunning() {
return false
}
c.Logger.Debug("TrySend", "channel", chID, "conn", c, "msgBytes", fmt.Sprintf("%X", msgBytes))
// Send message to channel.
channel, ok := c.channelsIdx[chID]
if !ok {
c.Logger.Error(fmt.Sprintf("Cannot send bytes, unknown channel %X", chID))
return false
}
ok = channel.trySendBytes(msgBytes)
if ok {
// Wake up sendRoutine if necessary
select {
case c.send <- struct{}{}:
default:
}
}
return ok
}
// CanSend returns true if you can send more data onto the chID, false
// otherwise. Use only as a heuristic.
func (c *MConnection) CanSend(chID byte) bool {
if !c.IsRunning() {
return false
}
channel, ok := c.channelsIdx[chID]
if !ok {
c.Logger.Error(fmt.Sprintf("Unknown channel %X", chID))
return false
}
return channel.canSend()
}
// sendRoutine polls for packets to send from channels.
func (c *MConnection) sendRoutine() {
defer c._recover()
FOR_LOOP:
for {
var _n int64
var err error
SELECTION:
select {
case <-c.flushTimer.Ch:
// NOTE: flushTimer.Set() must be called every time
// something is written to .bufConnWriter.
c.flush()
case <-c.chStatsTimer.Chan():
for _, channel := range c.channels {
channel.updateStats()
}
case <-c.pingTimer.Chan():
c.Logger.Debug("Send Ping")
_n, err = cdc.MarshalBinaryLengthPrefixedWriter(c.bufConnWriter, PacketPing{})
if err != nil {
break SELECTION
}
c.sendMonitor.Update(int(_n))
c.Logger.Debug("Starting pong timer", "dur", c.config.PongTimeout)
c.pongTimer = time.AfterFunc(c.config.PongTimeout, func() {
select {
case c.pongTimeoutCh <- true:
default:
}
})
c.flush()
case timeout := <-c.pongTimeoutCh:
if timeout {
c.Logger.Debug("Pong timeout")
err = errors.New("pong timeout")
} else {
c.stopPongTimer()
}
case <-c.pong:
c.Logger.Debug("Send Pong")
_n, err = cdc.MarshalBinaryLengthPrefixedWriter(c.bufConnWriter, PacketPong{})
if err != nil {
break SELECTION
}
c.sendMonitor.Update(int(_n))
c.flush()
case <-c.quitSendRoutine:
close(c.doneSendRoutine)
break FOR_LOOP
case <-c.send:
// Send some PacketMsgs
eof := c.sendSomePacketMsgs()
if !eof {
// Keep sendRoutine awake.
select {
case c.send <- struct{}{}:
default:
}
}
}
if !c.IsRunning() {
break FOR_LOOP
}
if err != nil {
c.Logger.Error("Connection failed @ sendRoutine", "conn", c, "err", err)
c.stopForError(err)
break FOR_LOOP
}
}
// Cleanup
c.stopPongTimer()
}
// Returns true if messages from channels were exhausted.
// Blocks in accordance to .sendMonitor throttling.
func (c *MConnection) sendSomePacketMsgs() bool {
// Block until .sendMonitor says we can write.
// Once we're ready we send more than we asked for,
// but amortized it should even out.
c.sendMonitor.Limit(c._maxPacketMsgSize, atomic.LoadInt64(&c.config.SendRate), true)
// Now send some PacketMsgs.
for i := 0; i < numBatchPacketMsgs; i++ {
if c.sendPacketMsg() {
return true
}
}
return false
}
// Returns true if messages from channels were exhausted.
func (c *MConnection) sendPacketMsg() bool {
// Choose a channel to create a PacketMsg from.
// The chosen channel will be the one whose recentlySent/priority is the least.
var leastRatio float32 = math.MaxFloat32
var leastChannel *Channel
for _, channel := range c.channels {
// If nothing to send, skip this channel
if !channel.isSendPending() {
continue
}
// Get ratio, and keep track of lowest ratio.
ratio := float32(channel.recentlySent) / float32(channel.desc.Priority)
if ratio < leastRatio {
leastRatio = ratio
leastChannel = channel
}
}
// Nothing to send?
if leastChannel == nil {
return true
}
// c.Logger.Info("Found a msgPacket to send")
// Make & send a PacketMsg from this channel
_n, err := leastChannel.writePacketMsgTo(c.bufConnWriter)
if err != nil {
c.Logger.Error("Failed to write PacketMsg", "err", err)
c.stopForError(err)
return true
}
c.sendMonitor.Update(int(_n))
c.flushTimer.Set()
return false
}
// recvRoutine reads PacketMsgs and reconstructs the message using the channels' "recving" buffer.
// After a whole message has been assembled, it's pushed to onReceive().
// Blocks depending on how the connection is throttled.
// Otherwise, it never blocks.
func (c *MConnection) recvRoutine() {
defer c._recover()
FOR_LOOP:
for {
// Block until .recvMonitor says we can read.
c.recvMonitor.Limit(c._maxPacketMsgSize, atomic.LoadInt64(&c.config.RecvRate), true)
// Peek into bufConnReader for debugging
/*
if numBytes := c.bufConnReader.Buffered(); numBytes > 0 {
bz, err := c.bufConnReader.Peek(cmn.MinInt(numBytes, 100))
if err == nil {
// return
} else {
c.Logger.Debug("Error peeking connection buffer", "err", err)
// return nil
}
c.Logger.Info("Peek connection buffer", "numBytes", numBytes, "bz", bz)
}
*/
// Read packet type
var packet Packet
var _n int64
var err error
_n, err = cdc.UnmarshalBinaryLengthPrefixedReader(c.bufConnReader, &packet, int64(c._maxPacketMsgSize))
c.recvMonitor.Update(int(_n))
if err != nil {
if c.IsRunning() {
c.Logger.Error("Connection failed @ recvRoutine (reading byte)", "conn", c, "err", err)
c.stopForError(err)
}
break FOR_LOOP
}
// Read more depending on packet type.
switch pkt := packet.(type) {
case PacketPing:
// TODO: prevent abuse, as they cause flush()'s.
// https://github.com/tendermint/tendermint/issues/1190
c.Logger.Debug("Receive Ping")
select {
case c.pong <- struct{}{}:
default:
// never block
}
case PacketPong:
c.Logger.Debug("Receive Pong")
select {
case c.pongTimeoutCh <- false:
default:
// never block
}
case PacketMsg:
channel, ok := c.channelsIdx[pkt.ChannelID]
if !ok || channel == nil {
err := fmt.Errorf("Unknown channel %X", pkt.ChannelID)
c.Logger.Error("Connection failed @ recvRoutine", "conn", c, "err", err)
c.stopForError(err)
break FOR_LOOP
}
msgBytes, err := channel.recvPacketMsg(pkt)
if err != nil {
if c.IsRunning() {
c.Logger.Error("Connection failed @ recvRoutine", "conn", c, "err", err)
c.stopForError(err)
}
break FOR_LOOP
}
if msgBytes != nil {
c.Logger.Debug("Received bytes", "chID", pkt.ChannelID, "msgBytes", fmt.Sprintf("%X", msgBytes))
// NOTE: This means the reactor.Receive runs in the same thread as the p2p recv routine
c.onReceive(pkt.ChannelID, msgBytes)
}
default:
err := fmt.Errorf("Unknown message type %v", reflect.TypeOf(packet))
c.Logger.Error("Connection failed @ recvRoutine", "conn", c, "err", err)
c.stopForError(err)
break FOR_LOOP
}
}
// Cleanup
close(c.pong)
for range c.pong {
// Drain
}
}
// not goroutine-safe
func (c *MConnection) stopPongTimer() {
if c.pongTimer != nil {
_ = c.pongTimer.Stop()
c.pongTimer = nil
}
}
// maxPacketMsgSize returns a maximum size of PacketMsg, including the overhead
// of amino encoding.
func (c *MConnection) maxPacketMsgSize() int {
return len(cdc.MustMarshalBinaryLengthPrefixed(PacketMsg{
ChannelID: 0x01,
EOF: 1,
Bytes: make([]byte, c.config.MaxPacketMsgPayloadSize),
})) + 10 // leave room for changes in amino
}
type ConnectionStatus struct {
Duration time.Duration
SendMonitor flow.Status
RecvMonitor flow.Status
Channels []ChannelStatus
}
type ChannelStatus struct {
ID byte
SendQueueCapacity int
SendQueueSize int
Priority int
RecentlySent int64
}
func (c *MConnection) Status() ConnectionStatus {
var status ConnectionStatus
status.Duration = time.Since(c.created)
status.SendMonitor = c.sendMonitor.Status()
status.RecvMonitor = c.recvMonitor.Status()
status.Channels = make([]ChannelStatus, len(c.channels))
for i, channel := range c.channels {
status.Channels[i] = ChannelStatus{
ID: channel.desc.ID,
SendQueueCapacity: cap(channel.sendQueue),
SendQueueSize: int(atomic.LoadInt32(&channel.sendQueueSize)),
Priority: channel.desc.Priority,
RecentlySent: atomic.LoadInt64(&channel.recentlySent),
}
}
return status
}
//-----------------------------------------------------------------------------
type ChannelDescriptor struct {
ID byte
Priority int
SendQueueCapacity int
RecvBufferCapacity int
RecvMessageCapacity int
}
func (chDesc ChannelDescriptor) FillDefaults() (filled ChannelDescriptor) {
if chDesc.SendQueueCapacity == 0 {
chDesc.SendQueueCapacity = defaultSendQueueCapacity
}
if chDesc.RecvBufferCapacity == 0 {
chDesc.RecvBufferCapacity = defaultRecvBufferCapacity
}
if chDesc.RecvMessageCapacity == 0 {
chDesc.RecvMessageCapacity = defaultRecvMessageCapacity
}
filled = chDesc
return
}
// TODO: lowercase.
// NOTE: not goroutine-safe.
type Channel struct {
conn *MConnection
desc ChannelDescriptor
sendQueue chan []byte
sendQueueSize int32 // atomic.
recving []byte
sending []byte
recentlySent int64 // exponential moving average
maxPacketMsgPayloadSize int
Logger log.Logger
}
func newChannel(conn *MConnection, desc ChannelDescriptor) *Channel {
desc = desc.FillDefaults()
if desc.Priority <= 0 {
cmn.PanicSanity("Channel default priority must be a positive integer")
}
return &Channel{
conn: conn,
desc: desc,
sendQueue: make(chan []byte, desc.SendQueueCapacity),
recving: make([]byte, 0, desc.RecvBufferCapacity),
maxPacketMsgPayloadSize: conn.config.MaxPacketMsgPayloadSize,
}
}
func (ch *Channel) SetLogger(l log.Logger) {
ch.Logger = l
}
// Queues message to send to this channel.
// Goroutine-safe
// Times out (and returns false) after defaultSendTimeout
func (ch *Channel) sendBytes(bytes []byte) bool {
select {
case ch.sendQueue <- bytes:
atomic.AddInt32(&ch.sendQueueSize, 1)
return true
case <-time.After(defaultSendTimeout):
return false
}
}
// Queues message to send to this channel.
// Nonblocking, returns true if successful.
// Goroutine-safe
func (ch *Channel) trySendBytes(bytes []byte) bool {
select {
case ch.sendQueue <- bytes:
atomic.AddInt32(&ch.sendQueueSize, 1)
return true
default:
return false
}
}
// Goroutine-safe
func (ch *Channel) loadSendQueueSize() (size int) {
return int(atomic.LoadInt32(&ch.sendQueueSize))
}
// Goroutine-safe
// Use only as a heuristic.
func (ch *Channel) canSend() bool {
return ch.loadSendQueueSize() < defaultSendQueueCapacity
}
// Returns true if any PacketMsgs are pending to be sent.
// Call before calling nextPacketMsg()
// Goroutine-safe
func (ch *Channel) isSendPending() bool {
if len(ch.sending) == 0 {
if len(ch.sendQueue) == 0 {
return false
}
ch.sending = <-ch.sendQueue
}
return true
}
// Creates a new PacketMsg to send.
// Not goroutine-safe
func (ch *Channel) nextPacketMsg() PacketMsg {
packet := PacketMsg{}
packet.ChannelID = byte(ch.desc.ID)
maxSize := ch.maxPacketMsgPayloadSize
packet.Bytes = ch.sending[:cmn.MinInt(maxSize, len(ch.sending))]
if len(ch.sending) <= maxSize {
packet.EOF = byte(0x01)
ch.sending = nil
atomic.AddInt32(&ch.sendQueueSize, -1) // decrement sendQueueSize
} else {
packet.EOF = byte(0x00)
ch.sending = ch.sending[cmn.MinInt(maxSize, len(ch.sending)):]
}
return packet
}
// Writes next PacketMsg to w and updates c.recentlySent.
// Not goroutine-safe
func (ch *Channel) writePacketMsgTo(w io.Writer) (n int64, err error) {
var packet = ch.nextPacketMsg()
n, err = cdc.MarshalBinaryLengthPrefixedWriter(w, packet)
atomic.AddInt64(&ch.recentlySent, n)
return
}
// Handles incoming PacketMsgs. It returns a message bytes if message is
// complete. NOTE message bytes may change on next call to recvPacketMsg.
// Not goroutine-safe
func (ch *Channel) recvPacketMsg(packet PacketMsg) ([]byte, error) {
ch.Logger.Debug("Read PacketMsg", "conn", ch.conn, "packet", packet)
var recvCap, recvReceived = ch.desc.RecvMessageCapacity, len(ch.recving) + len(packet.Bytes)
if recvCap < recvReceived {
return nil, fmt.Errorf("Received message exceeds available capacity: %v < %v", recvCap, recvReceived)
}
ch.recving = append(ch.recving, packet.Bytes...)
if packet.EOF == byte(0x01) {
msgBytes := ch.recving
// clear the slice without re-allocating.
// http://stackoverflow.com/questions/16971741/how-do-you-clear-a-slice-in-go
// suggests this could be a memory leak, but we might as well keep the memory for the channel until it closes,
// at which point the recving slice stops being used and should be garbage collected
ch.recving = ch.recving[:0] // make([]byte, 0, ch.desc.RecvBufferCapacity)
return msgBytes, nil
}
return nil, nil
}
// Call this periodically to update stats for throttling purposes.
// Not goroutine-safe
func (ch *Channel) updateStats() {
// Exponential decay of stats.
// TODO: optimize.
atomic.StoreInt64(&ch.recentlySent, int64(float64(atomic.LoadInt64(&ch.recentlySent))*0.8))
}
//----------------------------------------
// Packet
type Packet interface {
AssertIsPacket()
}
func RegisterPacket(cdc *amino.Codec) {
cdc.RegisterInterface((*Packet)(nil), nil)
cdc.RegisterConcrete(PacketPing{}, "tendermint/p2p/PacketPing", nil)
cdc.RegisterConcrete(PacketPong{}, "tendermint/p2p/PacketPong", nil)
cdc.RegisterConcrete(PacketMsg{}, "tendermint/p2p/PacketMsg", nil)
}
func (_ PacketPing) AssertIsPacket() {}
func (_ PacketPong) AssertIsPacket() {}
func (_ PacketMsg) AssertIsPacket() {}
type PacketPing struct {
}
type PacketPong struct {
}
type PacketMsg struct {
ChannelID byte
EOF byte // 1 means message ends here.
Bytes []byte
}
func (mp PacketMsg) String() string {
return fmt.Sprintf("PacketMsg{%X:%X T:%X}", mp.ChannelID, mp.Bytes, mp.EOF)
}