You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1118 lines
31 KiB

package statesync
import (
"bytes"
"context"
"errors"
"fmt"
"reflect"
"runtime/debug"
"sort"
"time"
abci "github.com/tendermint/tendermint/abci/types"
"github.com/tendermint/tendermint/config"
tmsync "github.com/tendermint/tendermint/internal/libs/sync"
"github.com/tendermint/tendermint/internal/p2p"
"github.com/tendermint/tendermint/internal/proxy"
sm "github.com/tendermint/tendermint/internal/state"
"github.com/tendermint/tendermint/internal/store"
"github.com/tendermint/tendermint/libs/log"
"github.com/tendermint/tendermint/libs/service"
"github.com/tendermint/tendermint/light"
"github.com/tendermint/tendermint/light/provider"
ssproto "github.com/tendermint/tendermint/proto/tendermint/statesync"
"github.com/tendermint/tendermint/types"
)
var (
_ service.Service = (*Reactor)(nil)
_ p2p.Wrapper = (*ssproto.Message)(nil)
// ChannelShims contains a map of ChannelDescriptorShim objects, where each
// object wraps a reference to a legacy p2p ChannelDescriptor and the corresponding
// p2p proto.Message the new p2p Channel is responsible for handling.
//
//
// TODO: Remove once p2p refactor is complete.
// ref: https://github.com/tendermint/tendermint/issues/5670
ChannelShims = map[p2p.ChannelID]*p2p.ChannelDescriptorShim{
SnapshotChannel: {
MsgType: new(ssproto.Message),
Descriptor: &p2p.ChannelDescriptor{
ID: byte(SnapshotChannel),
Priority: 6,
SendQueueCapacity: 10,
RecvMessageCapacity: snapshotMsgSize,
RecvBufferCapacity: 128,
MaxSendBytes: 400,
},
},
ChunkChannel: {
MsgType: new(ssproto.Message),
Descriptor: &p2p.ChannelDescriptor{
ID: byte(ChunkChannel),
Priority: 3,
SendQueueCapacity: 4,
RecvMessageCapacity: chunkMsgSize,
RecvBufferCapacity: 128,
MaxSendBytes: 400,
},
},
LightBlockChannel: {
MsgType: new(ssproto.Message),
Descriptor: &p2p.ChannelDescriptor{
ID: byte(LightBlockChannel),
Priority: 5,
SendQueueCapacity: 10,
RecvMessageCapacity: lightBlockMsgSize,
RecvBufferCapacity: 128,
MaxSendBytes: 400,
},
},
ParamsChannel: {
MsgType: new(ssproto.Message),
Descriptor: &p2p.ChannelDescriptor{
ID: byte(ParamsChannel),
Priority: 2,
SendQueueCapacity: 10,
RecvMessageCapacity: paramMsgSize,
RecvBufferCapacity: 128,
MaxSendBytes: 400,
},
},
}
)
const (
// SnapshotChannel exchanges snapshot metadata
SnapshotChannel = p2p.ChannelID(0x60)
// ChunkChannel exchanges chunk contents
ChunkChannel = p2p.ChannelID(0x61)
// LightBlockChannel exchanges light blocks
LightBlockChannel = p2p.ChannelID(0x62)
// ParamsChannel exchanges consensus params
ParamsChannel = p2p.ChannelID(0x63)
// recentSnapshots is the number of recent snapshots to send and receive per peer.
recentSnapshots = 10
// snapshotMsgSize is the maximum size of a snapshotResponseMessage
snapshotMsgSize = int(4e6) // ~4MB
// chunkMsgSize is the maximum size of a chunkResponseMessage
chunkMsgSize = int(16e6) // ~16MB
// lightBlockMsgSize is the maximum size of a lightBlockResponseMessage
lightBlockMsgSize = int(1e7) // ~1MB
// paramMsgSize is the maximum size of a paramsResponseMessage
paramMsgSize = int(1e5) // ~100kb
// lightBlockResponseTimeout is how long the dispatcher waits for a peer to
// return a light block
lightBlockResponseTimeout = 10 * time.Second
// consensusParamsResponseTimeout is the time the p2p state provider waits
// before performing a secondary call
consensusParamsResponseTimeout = 5 * time.Second
// maxLightBlockRequestRetries is the amount of retries acceptable before
// the backfill process aborts
maxLightBlockRequestRetries = 20
)
// Metricer defines an interface used for the rpc sync info query, please see statesync.metrics
// for the details.
type Metricer interface {
TotalSnapshots() int64
ChunkProcessAvgTime() time.Duration
SnapshotHeight() int64
SnapshotChunksCount() int64
SnapshotChunksTotal() int64
BackFilledBlocks() int64
BackFillBlocksTotal() int64
}
// Reactor handles state sync, both restoring snapshots for the local node and
// serving snapshots for other nodes.
type Reactor struct {
service.BaseService
chainID string
initialHeight int64
cfg config.StateSyncConfig
stateStore sm.Store
blockStore *store.BlockStore
conn proxy.AppConnSnapshot
connQuery proxy.AppConnQuery
tempDir string
snapshotCh *p2p.Channel
chunkCh *p2p.Channel
blockCh *p2p.Channel
paramsCh *p2p.Channel
peerUpdates *p2p.PeerUpdates
closeCh chan struct{}
// Dispatcher is used to multiplex light block requests and responses over multiple
// peers used by the p2p state provider and in reverse sync.
dispatcher *Dispatcher
peers *peerList
// These will only be set when a state sync is in progress. It is used to feed
// received snapshots and chunks into the syncer and manage incoming and outgoing
// providers.
mtx tmsync.RWMutex
syncer *syncer
providers map[types.NodeID]*BlockProvider
stateProvider StateProvider
metrics *Metrics
backfillBlockTotal int64
backfilledBlocks int64
}
// NewReactor returns a reference to a new state sync reactor, which implements
// the service.Service interface. It accepts a logger, connections for snapshots
// and querying, references to p2p Channels and a channel to listen for peer
// updates on. Note, the reactor will close all p2p Channels when stopping.
func NewReactor(
chainID string,
initialHeight int64,
cfg config.StateSyncConfig,
logger log.Logger,
conn proxy.AppConnSnapshot,
connQuery proxy.AppConnQuery,
snapshotCh, chunkCh, blockCh, paramsCh *p2p.Channel,
peerUpdates *p2p.PeerUpdates,
stateStore sm.Store,
blockStore *store.BlockStore,
tempDir string,
ssMetrics *Metrics,
) *Reactor {
r := &Reactor{
chainID: chainID,
initialHeight: initialHeight,
cfg: cfg,
conn: conn,
connQuery: connQuery,
snapshotCh: snapshotCh,
chunkCh: chunkCh,
blockCh: blockCh,
paramsCh: paramsCh,
peerUpdates: peerUpdates,
closeCh: make(chan struct{}),
tempDir: tempDir,
stateStore: stateStore,
blockStore: blockStore,
peers: newPeerList(),
dispatcher: NewDispatcher(blockCh.Out),
providers: make(map[types.NodeID]*BlockProvider),
metrics: ssMetrics,
}
r.BaseService = *service.NewBaseService(logger, "StateSync", r)
return r
}
// OnStart starts separate go routines for each p2p Channel and listens for
// envelopes on each. In addition, it also listens for peer updates and handles
// messages on that p2p channel accordingly. Note, we do not launch a go-routine to
// handle individual envelopes as to not have to deal with bounding workers or pools.
// The caller must be sure to execute OnStop to ensure the outbound p2p Channels are
// closed. No error is returned.
func (r *Reactor) OnStart() error {
go r.processSnapshotCh()
go r.processChunkCh()
go r.processBlockCh()
go r.processParamsCh()
go r.processPeerUpdates()
return nil
}
// OnStop stops the reactor by signaling to all spawned goroutines to exit and
// blocking until they all exit.
func (r *Reactor) OnStop() {
// tell the dispatcher to stop sending any more requests
r.dispatcher.Close()
// wait for any remaining requests to complete
<-r.dispatcher.Done()
// Close closeCh to signal to all spawned goroutines to gracefully exit. All
// p2p Channels should execute Close().
close(r.closeCh)
// Wait for all p2p Channels to be closed before returning. This ensures we
// can easily reason about synchronization of all p2p Channels and ensure no
// panics will occur.
<-r.snapshotCh.Done()
<-r.chunkCh.Done()
<-r.blockCh.Done()
<-r.paramsCh.Done()
<-r.peerUpdates.Done()
}
// Sync runs a state sync, fetching snapshots and providing chunks to the
// application. At the close of the operation, Sync will bootstrap the state
// store and persist the commit at that height so that either consensus or
// blocksync can commence. It will then proceed to backfill the necessary amount
// of historical blocks before participating in consensus
func (r *Reactor) Sync(ctx context.Context) (sm.State, error) {
// We need at least two peers (for cross-referencing of light blocks) before we can
// begin state sync
if err := r.waitForEnoughPeers(ctx, 2); err != nil {
return sm.State{}, err
}
r.mtx.Lock()
if r.syncer != nil {
r.mtx.Unlock()
return sm.State{}, errors.New("a state sync is already in progress")
}
if err := r.initStateProvider(ctx, r.chainID, r.initialHeight); err != nil {
return sm.State{}, err
}
r.syncer = newSyncer(
r.cfg,
r.Logger,
r.conn,
r.connQuery,
r.stateProvider,
r.snapshotCh.Out,
r.chunkCh.Out,
r.snapshotCh.Done(),
r.tempDir,
r.metrics,
)
r.mtx.Unlock()
defer func() {
r.mtx.Lock()
// reset syncing objects at the close of Sync
r.syncer = nil
r.stateProvider = nil
r.mtx.Unlock()
}()
requestSnapshotsHook := func() {
// request snapshots from all currently connected peers
msg := p2p.Envelope{
Broadcast: true,
Message: &ssproto.SnapshotsRequest{},
}
select {
case <-ctx.Done():
case <-r.closeCh:
case r.snapshotCh.Out <- msg:
}
}
state, commit, err := r.syncer.SyncAny(ctx, r.cfg.DiscoveryTime, requestSnapshotsHook)
if err != nil {
return sm.State{}, err
}
err = r.stateStore.Bootstrap(state)
if err != nil {
return sm.State{}, fmt.Errorf("failed to bootstrap node with new state: %w", err)
}
err = r.blockStore.SaveSeenCommit(state.LastBlockHeight, commit)
if err != nil {
return sm.State{}, fmt.Errorf("failed to store last seen commit: %w", err)
}
err = r.Backfill(ctx, state)
if err != nil {
r.Logger.Error("backfill failed. Proceeding optimistically...", "err", err)
}
return state, nil
}
// Backfill sequentially fetches, verifies and stores light blocks in reverse
// order. It does not stop verifying blocks until reaching a block with a height
// and time that is less or equal to the stopHeight and stopTime. The
// trustedBlockID should be of the header at startHeight.
func (r *Reactor) Backfill(ctx context.Context, state sm.State) error {
params := state.ConsensusParams.Evidence
stopHeight := state.LastBlockHeight - params.MaxAgeNumBlocks
stopTime := state.LastBlockTime.Add(-params.MaxAgeDuration)
// ensure that stop height doesn't go below the initial height
if stopHeight < state.InitialHeight {
stopHeight = state.InitialHeight
// this essentially makes stop time a void criteria for termination
stopTime = state.LastBlockTime
}
return r.backfill(
ctx,
state.ChainID,
state.LastBlockHeight,
stopHeight,
state.InitialHeight,
state.LastBlockID,
stopTime,
)
}
func (r *Reactor) backfill(
ctx context.Context,
chainID string,
startHeight, stopHeight, initialHeight int64,
trustedBlockID types.BlockID,
stopTime time.Time,
) error {
r.Logger.Info("starting backfill process...", "startHeight", startHeight,
"stopHeight", stopHeight, "stopTime", stopTime, "trustedBlockID", trustedBlockID)
r.backfillBlockTotal = startHeight - stopHeight + 1
r.metrics.BackFillBlocksTotal.Set(float64(r.backfillBlockTotal))
const sleepTime = 1 * time.Second
var (
lastValidatorSet *types.ValidatorSet
lastChangeHeight = startHeight
)
queue := newBlockQueue(startHeight, stopHeight, initialHeight, stopTime, maxLightBlockRequestRetries)
// fetch light blocks across four workers. The aim with deploying concurrent
// workers is to equate the network messaging time with the verification
// time. Ideally we want the verification process to never have to be
// waiting on blocks. If it takes 4s to retrieve a block and 1s to verify
// it, then steady state involves four workers.
for i := 0; i < int(r.cfg.Fetchers); i++ {
ctxWithCancel, cancel := context.WithCancel(ctx)
defer cancel()
go func() {
for {
select {
case height := <-queue.nextHeight():
// pop the next peer of the list to send a request to
peer := r.peers.Pop(ctx)
r.Logger.Debug("fetching next block", "height", height, "peer", peer)
subCtx, cancel := context.WithTimeout(ctxWithCancel, lightBlockResponseTimeout)
defer cancel()
lb, err := func() (*types.LightBlock, error) {
defer cancel()
// request the light block with a timeout
return r.dispatcher.LightBlock(subCtx, height, peer)
}()
// once the peer has returned a value, add it back to the peer list to be used again
r.peers.Append(peer)
if errors.Is(err, context.Canceled) {
return
}
if err != nil {
queue.retry(height)
if errors.Is(err, errNoConnectedPeers) {
r.Logger.Info("backfill: no connected peers to fetch light blocks from; sleeping...",
"sleepTime", sleepTime)
time.Sleep(sleepTime)
} else {
// we don't punish the peer as it might just have not responded in time
r.Logger.Info("backfill: error with fetching light block",
"height", height, "err", err)
}
continue
}
if lb == nil {
r.Logger.Info("backfill: peer didn't have block, fetching from another peer", "height", height)
queue.retry(height)
// As we are fetching blocks backwards, if this node doesn't have the block it likely doesn't
// have any prior ones, thus we remove it from the peer list.
r.peers.Remove(peer)
continue
}
// run a validate basic. This checks the validator set and commit
// hashes line up
err = lb.ValidateBasic(chainID)
if err != nil || lb.Height != height {
r.Logger.Info("backfill: fetched light block failed validate basic, removing peer...",
"err", err, "height", height)
queue.retry(height)
r.blockCh.Error <- p2p.PeerError{
NodeID: peer,
Err: fmt.Errorf("received invalid light block: %w", err),
}
continue
}
// add block to queue to be verified
queue.add(lightBlockResponse{
block: lb,
peer: peer,
})
r.Logger.Debug("backfill: added light block to processing queue", "height", height)
case <-queue.done():
return
}
}
}()
}
// verify all light blocks
for {
select {
case <-r.closeCh:
queue.close()
return nil
case <-ctx.Done():
queue.close()
return nil
case resp := <-queue.verifyNext():
// validate the header hash. We take the last block id of the
// previous header (i.e. one height above) as the trusted hash which
// we equate to. ValidatorsHash and CommitHash have already been
// checked in the `ValidateBasic`
if w, g := trustedBlockID.Hash, resp.block.Hash(); !bytes.Equal(w, g) {
r.Logger.Info("received invalid light block. header hash doesn't match trusted LastBlockID",
"trustedHash", w, "receivedHash", g, "height", resp.block.Height)
r.blockCh.Error <- p2p.PeerError{
NodeID: resp.peer,
Err: fmt.Errorf("received invalid light block. Expected hash %v, got: %v", w, g),
}
queue.retry(resp.block.Height)
continue
}
// save the signed headers
err := r.blockStore.SaveSignedHeader(resp.block.SignedHeader, trustedBlockID)
if err != nil {
return err
}
// check if there has been a change in the validator set
if lastValidatorSet != nil && !bytes.Equal(resp.block.Header.ValidatorsHash, resp.block.Header.NextValidatorsHash) {
// save all the heights that the last validator set was the same
err = r.stateStore.SaveValidatorSets(resp.block.Height+1, lastChangeHeight, lastValidatorSet)
if err != nil {
return err
}
// update the lastChangeHeight
lastChangeHeight = resp.block.Height
}
trustedBlockID = resp.block.LastBlockID
queue.success(resp.block.Height)
r.Logger.Info("backfill: verified and stored light block", "height", resp.block.Height)
lastValidatorSet = resp.block.ValidatorSet
r.backfilledBlocks++
r.metrics.BackFilledBlocks.Add(1)
// The block height might be less than the stopHeight because of the stopTime condition
// hasn't been fulfilled.
if resp.block.Height < stopHeight {
r.backfillBlockTotal++
r.metrics.BackFillBlocksTotal.Set(float64(r.backfillBlockTotal))
}
case <-queue.done():
if err := queue.error(); err != nil {
return err
}
// save the final batch of validators
if err := r.stateStore.SaveValidatorSets(queue.terminal.Height, lastChangeHeight, lastValidatorSet); err != nil {
return err
}
r.Logger.Info("successfully completed backfill process", "endHeight", queue.terminal.Height)
return nil
}
}
}
// handleSnapshotMessage handles envelopes sent from peers on the
// SnapshotChannel. It returns an error only if the Envelope.Message is unknown
// for this channel. This should never be called outside of handleMessage.
func (r *Reactor) handleSnapshotMessage(envelope p2p.Envelope) error {
logger := r.Logger.With("peer", envelope.From)
switch msg := envelope.Message.(type) {
case *ssproto.SnapshotsRequest:
snapshots, err := r.recentSnapshots(recentSnapshots)
if err != nil {
logger.Error("failed to fetch snapshots", "err", err)
return nil
}
for _, snapshot := range snapshots {
logger.Info(
"advertising snapshot",
"height", snapshot.Height,
"format", snapshot.Format,
"peer", envelope.From,
)
r.snapshotCh.Out <- p2p.Envelope{
To: envelope.From,
Message: &ssproto.SnapshotsResponse{
Height: snapshot.Height,
Format: snapshot.Format,
Chunks: snapshot.Chunks,
Hash: snapshot.Hash,
Metadata: snapshot.Metadata,
},
}
}
case *ssproto.SnapshotsResponse:
r.mtx.RLock()
defer r.mtx.RUnlock()
if r.syncer == nil {
logger.Debug("received unexpected snapshot; no state sync in progress")
return nil
}
logger.Info("received snapshot", "height", msg.Height, "format", msg.Format)
_, err := r.syncer.AddSnapshot(envelope.From, &snapshot{
Height: msg.Height,
Format: msg.Format,
Chunks: msg.Chunks,
Hash: msg.Hash,
Metadata: msg.Metadata,
})
if err != nil {
logger.Error(
"failed to add snapshot",
"height", msg.Height,
"format", msg.Format,
"err", err,
"channel", r.snapshotCh.ID,
)
return nil
}
logger.Info("added snapshot", "height", msg.Height, "format", msg.Format)
default:
return fmt.Errorf("received unknown message: %T", msg)
}
return nil
}
// handleChunkMessage handles envelopes sent from peers on the ChunkChannel.
// It returns an error only if the Envelope.Message is unknown for this channel.
// This should never be called outside of handleMessage.
func (r *Reactor) handleChunkMessage(envelope p2p.Envelope) error {
switch msg := envelope.Message.(type) {
case *ssproto.ChunkRequest:
r.Logger.Debug(
"received chunk request",
"height", msg.Height,
"format", msg.Format,
"chunk", msg.Index,
"peer", envelope.From,
)
resp, err := r.conn.LoadSnapshotChunkSync(context.Background(), abci.RequestLoadSnapshotChunk{
Height: msg.Height,
Format: msg.Format,
Chunk: msg.Index,
})
if err != nil {
r.Logger.Error(
"failed to load chunk",
"height", msg.Height,
"format", msg.Format,
"chunk", msg.Index,
"err", err,
"peer", envelope.From,
)
return nil
}
r.Logger.Debug(
"sending chunk",
"height", msg.Height,
"format", msg.Format,
"chunk", msg.Index,
"peer", envelope.From,
)
r.chunkCh.Out <- p2p.Envelope{
To: envelope.From,
Message: &ssproto.ChunkResponse{
Height: msg.Height,
Format: msg.Format,
Index: msg.Index,
Chunk: resp.Chunk,
Missing: resp.Chunk == nil,
},
}
case *ssproto.ChunkResponse:
r.mtx.RLock()
defer r.mtx.RUnlock()
if r.syncer == nil {
r.Logger.Debug("received unexpected chunk; no state sync in progress", "peer", envelope.From)
return nil
}
r.Logger.Debug(
"received chunk; adding to sync",
"height", msg.Height,
"format", msg.Format,
"chunk", msg.Index,
"peer", envelope.From,
)
_, err := r.syncer.AddChunk(&chunk{
Height: msg.Height,
Format: msg.Format,
Index: msg.Index,
Chunk: msg.Chunk,
Sender: envelope.From,
})
if err != nil {
r.Logger.Error(
"failed to add chunk",
"height", msg.Height,
"format", msg.Format,
"chunk", msg.Index,
"err", err,
"peer", envelope.From,
)
return nil
}
default:
return fmt.Errorf("received unknown message: %T", msg)
}
return nil
}
func (r *Reactor) handleLightBlockMessage(envelope p2p.Envelope) error {
switch msg := envelope.Message.(type) {
case *ssproto.LightBlockRequest:
r.Logger.Info("received light block request", "height", msg.Height)
lb, err := r.fetchLightBlock(msg.Height)
if err != nil {
r.Logger.Error("failed to retrieve light block", "err", err, "height", msg.Height)
return err
}
if lb == nil {
r.blockCh.Out <- p2p.Envelope{
To: envelope.From,
Message: &ssproto.LightBlockResponse{
LightBlock: nil,
},
}
return nil
}
lbproto, err := lb.ToProto()
if err != nil {
r.Logger.Error("marshaling light block to proto", "err", err)
return nil
}
// NOTE: If we don't have the light block we will send a nil light block
// back to the requested node, indicating that we don't have it.
r.blockCh.Out <- p2p.Envelope{
To: envelope.From,
Message: &ssproto.LightBlockResponse{
LightBlock: lbproto,
},
}
case *ssproto.LightBlockResponse:
var height int64 = 0
if msg.LightBlock != nil {
height = msg.LightBlock.SignedHeader.Header.Height
}
r.Logger.Info("received light block response", "peer", envelope.From, "height", height)
if err := r.dispatcher.Respond(msg.LightBlock, envelope.From); err != nil {
r.Logger.Error("error processing light block response", "err", err, "height", height)
}
default:
return fmt.Errorf("received unknown message: %T", msg)
}
return nil
}
func (r *Reactor) handleParamsMessage(envelope p2p.Envelope) error {
switch msg := envelope.Message.(type) {
case *ssproto.ParamsRequest:
r.Logger.Debug("received consensus params request", "height", msg.Height)
cp, err := r.stateStore.LoadConsensusParams(int64(msg.Height))
if err != nil {
r.Logger.Error("failed to fetch requested consensus params", "err", err, "height", msg.Height)
return nil
}
cpproto := cp.ToProto()
r.paramsCh.Out <- p2p.Envelope{
To: envelope.From,
Message: &ssproto.ParamsResponse{
Height: msg.Height,
ConsensusParams: cpproto,
},
}
case *ssproto.ParamsResponse:
r.mtx.RLock()
defer r.mtx.RUnlock()
r.Logger.Debug("received consensus params response", "height", msg.Height)
cp := types.ConsensusParamsFromProto(msg.ConsensusParams)
if sp, ok := r.stateProvider.(*stateProviderP2P); ok {
select {
case sp.paramsRecvCh <- cp:
default:
}
} else {
r.Logger.Debug("received unexpected params response; using RPC state provider", "peer", envelope.From)
}
default:
return fmt.Errorf("received unknown message: %T", msg)
}
return nil
}
// handleMessage handles an Envelope sent from a peer on a specific p2p Channel.
// It will handle errors and any possible panics gracefully. A caller can handle
// any error returned by sending a PeerError on the respective channel.
func (r *Reactor) handleMessage(chID p2p.ChannelID, envelope p2p.Envelope) (err error) {
defer func() {
if e := recover(); e != nil {
err = fmt.Errorf("panic in processing message: %v", e)
r.Logger.Error(
"recovering from processing message panic",
"err", err,
"stack", string(debug.Stack()),
)
}
}()
r.Logger.Debug("received message", "message", reflect.TypeOf(envelope.Message), "peer", envelope.From)
switch chID {
case SnapshotChannel:
err = r.handleSnapshotMessage(envelope)
case ChunkChannel:
err = r.handleChunkMessage(envelope)
case LightBlockChannel:
err = r.handleLightBlockMessage(envelope)
case ParamsChannel:
err = r.handleParamsMessage(envelope)
default:
err = fmt.Errorf("unknown channel ID (%d) for envelope (%v)", chID, envelope)
}
return err
}
// processSnapshotCh initiates a blocking process where we listen for and handle
// envelopes on the SnapshotChannel.
func (r *Reactor) processSnapshotCh() {
r.processCh(r.snapshotCh, "snapshot")
}
// processChunkCh initiates a blocking process where we listen for and handle
// envelopes on the ChunkChannel.
func (r *Reactor) processChunkCh() {
r.processCh(r.chunkCh, "chunk")
}
// processBlockCh initiates a blocking process where we listen for and handle
// envelopes on the LightBlockChannel.
func (r *Reactor) processBlockCh() {
r.processCh(r.blockCh, "light block")
}
func (r *Reactor) processParamsCh() {
r.processCh(r.paramsCh, "consensus params")
}
// processCh routes state sync messages to their respective handlers. Any error
// encountered during message execution will result in a PeerError being sent on
// the respective channel. When the reactor is stopped, we will catch the signal
// and close the p2p Channel gracefully.
func (r *Reactor) processCh(ch *p2p.Channel, chName string) {
defer ch.Close()
for {
select {
case envelope := <-ch.In:
if err := r.handleMessage(ch.ID, envelope); err != nil {
r.Logger.Error(fmt.Sprintf("failed to process %s message", chName),
"ch_id", ch.ID, "envelope", envelope, "err", err)
ch.Error <- p2p.PeerError{
NodeID: envelope.From,
Err: err,
}
}
case <-r.closeCh:
r.Logger.Debug(fmt.Sprintf("stopped listening on %s channel; closing...", chName))
return
}
}
}
// processPeerUpdate processes a PeerUpdate, returning an error upon failing to
// handle the PeerUpdate or if a panic is recovered.
func (r *Reactor) processPeerUpdate(peerUpdate p2p.PeerUpdate) {
r.Logger.Info("received peer update", "peer", peerUpdate.NodeID, "status", peerUpdate.Status)
switch peerUpdate.Status {
case p2p.PeerStatusUp:
r.peers.Append(peerUpdate.NodeID)
case p2p.PeerStatusDown:
r.peers.Remove(peerUpdate.NodeID)
}
r.mtx.Lock()
if r.syncer == nil {
r.mtx.Unlock()
return
}
defer r.mtx.Unlock()
switch peerUpdate.Status {
case p2p.PeerStatusUp:
newProvider := NewBlockProvider(peerUpdate.NodeID, r.chainID, r.dispatcher)
r.providers[peerUpdate.NodeID] = newProvider
r.syncer.AddPeer(peerUpdate.NodeID)
if sp, ok := r.stateProvider.(*stateProviderP2P); ok {
// we do this in a separate routine to not block whilst waiting for the light client to finish
// whatever call it's currently executing
go sp.addProvider(newProvider)
}
case p2p.PeerStatusDown:
delete(r.providers, peerUpdate.NodeID)
r.syncer.RemovePeer(peerUpdate.NodeID)
}
r.Logger.Info("processed peer update", "peer", peerUpdate.NodeID, "status", peerUpdate.Status)
}
// processPeerUpdates initiates a blocking process where we listen for and handle
// PeerUpdate messages. When the reactor is stopped, we will catch the signal and
// close the p2p PeerUpdatesCh gracefully.
func (r *Reactor) processPeerUpdates() {
defer r.peerUpdates.Close()
for {
select {
case peerUpdate := <-r.peerUpdates.Updates():
r.processPeerUpdate(peerUpdate)
case <-r.closeCh:
r.Logger.Debug("stopped listening on peer updates channel; closing...")
return
}
}
}
// recentSnapshots fetches the n most recent snapshots from the app
func (r *Reactor) recentSnapshots(n uint32) ([]*snapshot, error) {
resp, err := r.conn.ListSnapshotsSync(context.Background(), abci.RequestListSnapshots{})
if err != nil {
return nil, err
}
sort.Slice(resp.Snapshots, func(i, j int) bool {
a := resp.Snapshots[i]
b := resp.Snapshots[j]
switch {
case a.Height > b.Height:
return true
case a.Height == b.Height && a.Format > b.Format:
return true
default:
return false
}
})
snapshots := make([]*snapshot, 0, n)
for i, s := range resp.Snapshots {
if i >= recentSnapshots {
break
}
snapshots = append(snapshots, &snapshot{
Height: s.Height,
Format: s.Format,
Chunks: s.Chunks,
Hash: s.Hash,
Metadata: s.Metadata,
})
}
return snapshots, nil
}
// fetchLightBlock works out whether the node has a light block at a particular
// height and if so returns it so it can be gossiped to peers
func (r *Reactor) fetchLightBlock(height uint64) (*types.LightBlock, error) {
h := int64(height)
blockMeta := r.blockStore.LoadBlockMeta(h)
if blockMeta == nil {
return nil, nil
}
commit := r.blockStore.LoadBlockCommit(h)
if commit == nil {
return nil, nil
}
vals, err := r.stateStore.LoadValidators(h)
if err != nil {
return nil, err
}
if vals == nil {
return nil, nil
}
return &types.LightBlock{
SignedHeader: &types.SignedHeader{
Header: &blockMeta.Header,
Commit: commit,
},
ValidatorSet: vals,
}, nil
}
func (r *Reactor) waitForEnoughPeers(ctx context.Context, numPeers int) error {
startAt := time.Now()
t := time.NewTicker(100 * time.Millisecond)
defer t.Stop()
for r.peers.Len() < numPeers {
select {
case <-ctx.Done():
return fmt.Errorf("operation canceled while waiting for peers after %s", time.Since(startAt))
case <-r.closeCh:
return fmt.Errorf("shutdown while waiting for peers after %s", time.Since(startAt))
case <-t.C:
continue
}
}
return nil
}
func (r *Reactor) initStateProvider(ctx context.Context, chainID string, initialHeight int64) error {
var err error
to := light.TrustOptions{
Period: r.cfg.TrustPeriod,
Height: r.cfg.TrustHeight,
Hash: r.cfg.TrustHashBytes(),
}
spLogger := r.Logger.With("module", "stateprovider")
spLogger.Info("initializing state provider", "trustPeriod", to.Period,
"trustHeight", to.Height, "useP2P", r.cfg.UseP2P)
if r.cfg.UseP2P {
if err := r.waitForEnoughPeers(ctx, 2); err != nil {
return err
}
peers := r.peers.All()
providers := make([]provider.Provider, len(peers))
for idx, p := range peers {
providers[idx] = NewBlockProvider(p, chainID, r.dispatcher)
}
r.stateProvider, err = NewP2PStateProvider(ctx, chainID, initialHeight, providers, to, r.paramsCh.Out, spLogger)
if err != nil {
return fmt.Errorf("failed to initialize P2P state provider: %w", err)
}
} else {
r.stateProvider, err = NewRPCStateProvider(ctx, chainID, initialHeight, r.cfg.RPCServers, to, spLogger)
if err != nil {
return fmt.Errorf("failed to initialize RPC state provider: %w", err)
}
}
return nil
}
func (r *Reactor) TotalSnapshots() int64 {
r.mtx.RLock()
defer r.mtx.RUnlock()
if r.syncer != nil && r.syncer.snapshots != nil {
return int64(len(r.syncer.snapshots.snapshots))
}
return 0
}
func (r *Reactor) ChunkProcessAvgTime() time.Duration {
r.mtx.RLock()
defer r.mtx.RUnlock()
if r.syncer != nil {
return time.Duration(r.syncer.avgChunkTime)
}
return time.Duration(0)
}
func (r *Reactor) SnapshotHeight() int64 {
r.mtx.RLock()
defer r.mtx.RUnlock()
if r.syncer != nil {
return r.syncer.lastSyncedSnapshotHeight
}
return 0
}
func (r *Reactor) SnapshotChunksCount() int64 {
r.mtx.RLock()
defer r.mtx.RUnlock()
if r.syncer != nil && r.syncer.chunks != nil {
return int64(r.syncer.chunks.numChunksReturned())
}
return 0
}
func (r *Reactor) SnapshotChunksTotal() int64 {
r.mtx.RLock()
defer r.mtx.RUnlock()
if r.syncer != nil && r.syncer.processingSnapshot != nil {
return int64(r.syncer.processingSnapshot.Chunks)
}
return 0
}
func (r *Reactor) BackFilledBlocks() int64 {
r.mtx.RLock()
defer r.mtx.RUnlock()
return r.backfilledBlocks
}
func (r *Reactor) BackFillBlocksTotal() int64 {
r.mtx.RLock()
defer r.mtx.RUnlock()
return r.backfillBlockTotal
}