You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

420 lines
12 KiB

// Modified for Tendermint
// Originally Copyright (c) 2013-2014 Conformal Systems LLC.
// https://github.com/conformal/btcd/blob/master/LICENSE
package p2p
import (
"encoding/hex"
"errors"
"flag"
"fmt"
"net"
"strconv"
"strings"
"time"
tmp2p "github.com/tendermint/tendermint/proto/tendermint/p2p"
)
// EmptyNetAddress defines the string representation of an empty NetAddress
const EmptyNetAddress = "<nil-NetAddress>"
// NetAddress defines information about a peer on the network
// including its ID, IP address, and port.
type NetAddress struct {
ID ID `json:"id"`
IP net.IP `json:"ip"`
Port uint16 `json:"port"`
}
// IDAddressString returns id@hostPort. It strips the leading
// protocol from protocolHostPort if it exists.
func IDAddressString(id ID, protocolHostPort string) string {
hostPort := removeProtocolIfDefined(protocolHostPort)
return fmt.Sprintf("%s@%s", id, hostPort)
}
// NewNetAddress returns a new NetAddress using the provided TCP
// address. When testing, other net.Addr (except TCP) will result in
// using 0.0.0.0:0. When normal run, other net.Addr (except TCP) will
// panic. Panics if ID is invalid.
// TODO: socks proxies?
func NewNetAddress(id ID, addr net.Addr) *NetAddress {
tcpAddr, ok := addr.(*net.TCPAddr)
if !ok {
if flag.Lookup("test.v") == nil { // normal run
panic(fmt.Sprintf("Only TCPAddrs are supported. Got: %v", addr))
} else { // in testing
netAddr := NewNetAddressIPPort(net.IP("127.0.0.1"), 0)
netAddr.ID = id
return netAddr
}
}
if err := validateID(id); err != nil {
panic(fmt.Sprintf("Invalid ID %v: %v (addr: %v)", id, err, addr))
}
ip := tcpAddr.IP
port := uint16(tcpAddr.Port)
na := NewNetAddressIPPort(ip, port)
na.ID = id
return na
}
// NewNetAddressString returns a new NetAddress using the provided address in
// the form of "ID@IP:Port".
// Also resolves the host if host is not an IP.
// Errors are of type ErrNetAddressXxx where Xxx is in (NoID, Invalid, Lookup)
func NewNetAddressString(addr string) (*NetAddress, error) {
addrWithoutProtocol := removeProtocolIfDefined(addr)
spl := strings.Split(addrWithoutProtocol, "@")
if len(spl) != 2 {
return nil, ErrNetAddressNoID{addr}
}
// get ID
if err := validateID(ID(spl[0])); err != nil {
return nil, ErrNetAddressInvalid{addrWithoutProtocol, err}
}
var id ID
id, addrWithoutProtocol = ID(spl[0]), spl[1]
// get host and port
host, portStr, err := net.SplitHostPort(addrWithoutProtocol)
if err != nil {
return nil, ErrNetAddressInvalid{addrWithoutProtocol, err}
}
if len(host) == 0 {
return nil, ErrNetAddressInvalid{
addrWithoutProtocol,
errors.New("host is empty")}
}
ip := net.ParseIP(host)
if ip == nil {
ips, err := net.LookupIP(host)
if err != nil {
return nil, ErrNetAddressLookup{host, err}
}
ip = ips[0]
}
port, err := strconv.ParseUint(portStr, 10, 16)
if err != nil {
return nil, ErrNetAddressInvalid{portStr, err}
}
na := NewNetAddressIPPort(ip, uint16(port))
na.ID = id
return na, nil
}
// NewNetAddressStrings returns an array of NetAddress'es build using
// the provided strings.
func NewNetAddressStrings(addrs []string) ([]*NetAddress, []error) {
netAddrs := make([]*NetAddress, 0)
errs := make([]error, 0)
for _, addr := range addrs {
netAddr, err := NewNetAddressString(addr)
if err != nil {
errs = append(errs, err)
} else {
netAddrs = append(netAddrs, netAddr)
}
}
return netAddrs, errs
}
// NewNetAddressIPPort returns a new NetAddress using the provided IP
// and port number.
func NewNetAddressIPPort(ip net.IP, port uint16) *NetAddress {
return &NetAddress{
IP: ip,
Port: port,
}
}
// NetAddressFromProto converts a Protobuf NetAddress into a native struct.
func NetAddressFromProto(pb tmp2p.NetAddress) (*NetAddress, error) {
ip := net.ParseIP(pb.IP)
if ip == nil {
return nil, fmt.Errorf("invalid IP address %v", pb.IP)
}
if pb.Port >= 1<<16 {
return nil, fmt.Errorf("invalid port number %v", pb.Port)
}
return &NetAddress{
ID: ID(pb.ID),
IP: ip,
Port: uint16(pb.Port),
}, nil
}
// NetAddressesFromProto converts a slice of Protobuf NetAddresses into a native slice.
func NetAddressesFromProto(pbs []tmp2p.NetAddress) ([]*NetAddress, error) {
nas := make([]*NetAddress, 0, len(pbs))
for _, pb := range pbs {
na, err := NetAddressFromProto(pb)
if err != nil {
return nil, err
}
nas = append(nas, na)
}
return nas, nil
}
// NetAddressesToProto converts a slice of NetAddresses into a Protobuf slice.
func NetAddressesToProto(nas []*NetAddress) []tmp2p.NetAddress {
pbs := make([]tmp2p.NetAddress, 0, len(nas))
for _, na := range nas {
if na != nil {
pbs = append(pbs, na.ToProto())
}
}
return pbs
}
// ToProto converts a NetAddress to Protobuf.
func (na *NetAddress) ToProto() tmp2p.NetAddress {
return tmp2p.NetAddress{
ID: string(na.ID),
IP: na.IP.String(),
Port: uint32(na.Port),
}
}
// Equals reports whether na and other are the same addresses,
// including their ID, IP, and Port.
func (na *NetAddress) Equals(other interface{}) bool {
if o, ok := other.(*NetAddress); ok {
return na.String() == o.String()
}
return false
}
// Same returns true is na has the same non-empty ID or DialString as other.
func (na *NetAddress) Same(other interface{}) bool {
if o, ok := other.(*NetAddress); ok {
if na.DialString() == o.DialString() {
return true
}
if na.ID != "" && na.ID == o.ID {
return true
}
}
return false
}
// String representation: <ID>@<IP>:<PORT>
func (na *NetAddress) String() string {
if na == nil {
return EmptyNetAddress
}
addrStr := na.DialString()
if na.ID != "" {
addrStr = IDAddressString(na.ID, addrStr)
}
return addrStr
}
func (na *NetAddress) DialString() string {
if na == nil {
return "<nil-NetAddress>"
}
return net.JoinHostPort(
na.IP.String(),
strconv.FormatUint(uint64(na.Port), 10),
)
}
// Dial calls net.Dial on the address.
func (na *NetAddress) Dial() (net.Conn, error) {
conn, err := net.Dial("tcp", na.DialString())
if err != nil {
return nil, err
}
return conn, nil
}
// DialTimeout calls net.DialTimeout on the address.
func (na *NetAddress) DialTimeout(timeout time.Duration) (net.Conn, error) {
conn, err := net.DialTimeout("tcp", na.DialString(), timeout)
if err != nil {
return nil, err
}
return conn, nil
}
// Routable returns true if the address is routable.
func (na *NetAddress) Routable() bool {
if err := na.Valid(); err != nil {
return false
}
// TODO(oga) bitcoind doesn't include RFC3849 here, but should we?
return !(na.RFC1918() || na.RFC3927() || na.RFC4862() ||
na.RFC4193() || na.RFC4843() || na.Local())
}
// For IPv4 these are either a 0 or all bits set address. For IPv6 a zero
// address or one that matches the RFC3849 documentation address format.
func (na *NetAddress) Valid() error {
if err := validateID(na.ID); err != nil {
return fmt.Errorf("invalid ID: %w", err)
}
if na.IP == nil {
return errors.New("no IP")
}
if na.IP.IsUnspecified() || na.RFC3849() || na.IP.Equal(net.IPv4bcast) {
return errors.New("invalid IP")
}
return nil
}
// HasID returns true if the address has an ID.
// NOTE: It does not check whether the ID is valid or not.
func (na *NetAddress) HasID() bool {
return string(na.ID) != ""
}
// Local returns true if it is a local address.
func (na *NetAddress) Local() bool {
return na.IP.IsLoopback() || zero4.Contains(na.IP)
}
// ReachabilityTo checks whenever o can be reached from na.
func (na *NetAddress) ReachabilityTo(o *NetAddress) int {
const (
Unreachable = 0
Default = iota
Teredo
Ipv6Weak
Ipv4
Ipv6Strong
)
switch {
case !na.Routable():
return Unreachable
case na.RFC4380():
switch {
case !o.Routable():
return Default
case o.RFC4380():
return Teredo
case o.IP.To4() != nil:
return Ipv4
default: // ipv6
return Ipv6Weak
}
case na.IP.To4() != nil:
if o.Routable() && o.IP.To4() != nil {
return Ipv4
}
return Default
default: /* ipv6 */
var tunnelled bool
// Is our v6 is tunnelled?
if o.RFC3964() || o.RFC6052() || o.RFC6145() {
tunnelled = true
}
switch {
case !o.Routable():
return Default
case o.RFC4380():
return Teredo
case o.IP.To4() != nil:
return Ipv4
case tunnelled:
// only prioritise ipv6 if we aren't tunnelling it.
return Ipv6Weak
}
return Ipv6Strong
}
}
// RFC1918: IPv4 Private networks (10.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12)
// RFC3849: IPv6 Documentation address (2001:0DB8::/32)
// RFC3927: IPv4 Autoconfig (169.254.0.0/16)
// RFC3964: IPv6 6to4 (2002::/16)
// RFC4193: IPv6 unique local (FC00::/7)
// RFC4380: IPv6 Teredo tunneling (2001::/32)
// RFC4843: IPv6 ORCHID: (2001:10::/28)
// RFC4862: IPv6 Autoconfig (FE80::/64)
// RFC6052: IPv6 well known prefix (64:FF9B::/96)
// RFC6145: IPv6 IPv4 translated address ::FFFF:0:0:0/96
var rfc1918_10 = net.IPNet{IP: net.ParseIP("10.0.0.0"), Mask: net.CIDRMask(8, 32)}
var rfc1918_192 = net.IPNet{IP: net.ParseIP("192.168.0.0"), Mask: net.CIDRMask(16, 32)}
var rfc1918_172 = net.IPNet{IP: net.ParseIP("172.16.0.0"), Mask: net.CIDRMask(12, 32)}
var rfc3849 = net.IPNet{IP: net.ParseIP("2001:0DB8::"), Mask: net.CIDRMask(32, 128)}
var rfc3927 = net.IPNet{IP: net.ParseIP("169.254.0.0"), Mask: net.CIDRMask(16, 32)}
var rfc3964 = net.IPNet{IP: net.ParseIP("2002::"), Mask: net.CIDRMask(16, 128)}
var rfc4193 = net.IPNet{IP: net.ParseIP("FC00::"), Mask: net.CIDRMask(7, 128)}
var rfc4380 = net.IPNet{IP: net.ParseIP("2001::"), Mask: net.CIDRMask(32, 128)}
var rfc4843 = net.IPNet{IP: net.ParseIP("2001:10::"), Mask: net.CIDRMask(28, 128)}
var rfc4862 = net.IPNet{IP: net.ParseIP("FE80::"), Mask: net.CIDRMask(64, 128)}
var rfc6052 = net.IPNet{IP: net.ParseIP("64:FF9B::"), Mask: net.CIDRMask(96, 128)}
var rfc6145 = net.IPNet{IP: net.ParseIP("::FFFF:0:0:0"), Mask: net.CIDRMask(96, 128)}
var zero4 = net.IPNet{IP: net.ParseIP("0.0.0.0"), Mask: net.CIDRMask(8, 32)}
var (
// onionCatNet defines the IPv6 address block used to support Tor.
// bitcoind encodes a .onion address as a 16 byte number by decoding the
// address prior to the .onion (i.e. the key hash) base32 into a ten
// byte number. It then stores the first 6 bytes of the address as
// 0xfd, 0x87, 0xd8, 0x7e, 0xeb, 0x43.
//
// This is the same range used by OnionCat, which is part part of the
// RFC4193 unique local IPv6 range.
//
// In summary the format is:
// { magic 6 bytes, 10 bytes base32 decode of key hash }
onionCatNet = ipNet("fd87:d87e:eb43::", 48, 128)
)
// ipNet returns a net.IPNet struct given the passed IP address string, number
// of one bits to include at the start of the mask, and the total number of bits
// for the mask.
func ipNet(ip string, ones, bits int) net.IPNet {
return net.IPNet{IP: net.ParseIP(ip), Mask: net.CIDRMask(ones, bits)}
}
func (na *NetAddress) RFC1918() bool {
return rfc1918_10.Contains(na.IP) ||
rfc1918_192.Contains(na.IP) ||
rfc1918_172.Contains(na.IP)
}
func (na *NetAddress) RFC3849() bool { return rfc3849.Contains(na.IP) }
func (na *NetAddress) RFC3927() bool { return rfc3927.Contains(na.IP) }
func (na *NetAddress) RFC3964() bool { return rfc3964.Contains(na.IP) }
func (na *NetAddress) RFC4193() bool { return rfc4193.Contains(na.IP) }
func (na *NetAddress) RFC4380() bool { return rfc4380.Contains(na.IP) }
func (na *NetAddress) RFC4843() bool { return rfc4843.Contains(na.IP) }
func (na *NetAddress) RFC4862() bool { return rfc4862.Contains(na.IP) }
func (na *NetAddress) RFC6052() bool { return rfc6052.Contains(na.IP) }
func (na *NetAddress) RFC6145() bool { return rfc6145.Contains(na.IP) }
func (na *NetAddress) OnionCatTor() bool { return onionCatNet.Contains(na.IP) }
func removeProtocolIfDefined(addr string) string {
if strings.Contains(addr, "://") {
return strings.Split(addr, "://")[1]
}
return addr
}
func validateID(id ID) error {
if len(id) == 0 {
return errors.New("no ID")
}
idBytes, err := hex.DecodeString(string(id))
if err != nil {
return err
}
if len(idBytes) != IDByteLength {
return fmt.Errorf("invalid hex length - got %d, expected %d", len(idBytes), IDByteLength)
}
return nil
}