|
package secp256k1_test
|
|
|
|
import (
|
|
"encoding/hex"
|
|
"math/big"
|
|
"testing"
|
|
|
|
"github.com/btcsuite/btcutil/base58"
|
|
"github.com/stretchr/testify/assert"
|
|
"github.com/stretchr/testify/require"
|
|
|
|
"github.com/tendermint/tendermint/crypto"
|
|
"github.com/tendermint/tendermint/crypto/secp256k1"
|
|
|
|
underlyingSecp256k1 "github.com/btcsuite/btcd/btcec"
|
|
)
|
|
|
|
type keyData struct {
|
|
priv string
|
|
pub string
|
|
addr string
|
|
}
|
|
|
|
var secpDataTable = []keyData{
|
|
{
|
|
priv: "a96e62ed3955e65be32703f12d87b6b5cf26039ecfa948dc5107a495418e5330",
|
|
pub: "02950e1cdfcb133d6024109fd489f734eeb4502418e538c28481f22bce276f248c",
|
|
addr: "1CKZ9Nx4zgds8tU7nJHotKSDr4a9bYJCa3",
|
|
},
|
|
}
|
|
|
|
func TestPubKeySecp256k1Address(t *testing.T) {
|
|
for _, d := range secpDataTable {
|
|
privB, _ := hex.DecodeString(d.priv)
|
|
pubB, _ := hex.DecodeString(d.pub)
|
|
addrBbz, _, _ := base58.CheckDecode(d.addr)
|
|
addrB := crypto.Address(addrBbz)
|
|
|
|
priv := secp256k1.PrivKey(privB)
|
|
pubKey := priv.PubKey()
|
|
pubT, _ := pubKey.(secp256k1.PubKey)
|
|
pub := pubT
|
|
addr := pubKey.Address()
|
|
|
|
assert.Equal(t, pub, secp256k1.PubKey(pubB), "Expected pub keys to match")
|
|
assert.Equal(t, addr, addrB, "Expected addresses to match")
|
|
}
|
|
}
|
|
|
|
func TestSignAndValidateSecp256k1(t *testing.T) {
|
|
privKey := secp256k1.GenPrivKey()
|
|
pubKey := privKey.PubKey()
|
|
|
|
msg := crypto.CRandBytes(128)
|
|
sig, err := privKey.Sign(msg)
|
|
require.Nil(t, err)
|
|
|
|
assert.True(t, pubKey.VerifySignature(msg, sig))
|
|
|
|
// Mutate the signature, just one bit.
|
|
sig[3] ^= byte(0x01)
|
|
|
|
assert.False(t, pubKey.VerifySignature(msg, sig))
|
|
}
|
|
|
|
// This test is intended to justify the removal of calls to the underlying library
|
|
// in creating the privkey.
|
|
func TestSecp256k1LoadPrivkeyAndSerializeIsIdentity(t *testing.T) {
|
|
numberOfTests := 256
|
|
for i := 0; i < numberOfTests; i++ {
|
|
// Seed the test case with some random bytes
|
|
privKeyBytes := [32]byte{}
|
|
copy(privKeyBytes[:], crypto.CRandBytes(32))
|
|
|
|
// This function creates a private and public key in the underlying libraries format.
|
|
// The private key is basically calling new(big.Int).SetBytes(pk), which removes leading zero bytes
|
|
priv, _ := underlyingSecp256k1.PrivKeyFromBytes(underlyingSecp256k1.S256(), privKeyBytes[:])
|
|
// this takes the bytes returned by `(big int).Bytes()`, and if the length is less than 32 bytes,
|
|
// pads the bytes from the left with zero bytes. Therefore these two functions composed
|
|
// result in the identity function on privKeyBytes, hence the following equality check
|
|
// always returning true.
|
|
serializedBytes := priv.Serialize()
|
|
require.Equal(t, privKeyBytes[:], serializedBytes)
|
|
}
|
|
}
|
|
|
|
func TestGenPrivKeySecp256k1(t *testing.T) {
|
|
// curve oder N
|
|
N := underlyingSecp256k1.S256().N
|
|
tests := []struct {
|
|
name string
|
|
secret []byte
|
|
}{
|
|
{"empty secret", []byte{}},
|
|
{
|
|
"some long secret",
|
|
[]byte("We live in a society exquisitely dependent on science and technology, " +
|
|
"in which hardly anyone knows anything about science and technology."),
|
|
},
|
|
{"another seed used in cosmos tests #1", []byte{0}},
|
|
{"another seed used in cosmos tests #2", []byte("mySecret")},
|
|
{"another seed used in cosmos tests #3", []byte("")},
|
|
}
|
|
for _, tt := range tests {
|
|
tt := tt
|
|
t.Run(tt.name, func(t *testing.T) {
|
|
gotPrivKey := secp256k1.GenPrivKeySecp256k1(tt.secret)
|
|
require.NotNil(t, gotPrivKey)
|
|
// interpret as a big.Int and make sure it is a valid field element:
|
|
fe := new(big.Int).SetBytes(gotPrivKey[:])
|
|
require.True(t, fe.Cmp(N) < 0)
|
|
require.True(t, fe.Sign() > 0)
|
|
})
|
|
}
|
|
}
|