You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

715 lines
23 KiB

package peer
import (
"bytes"
"container/list"
"fmt"
"github.com/davecgh/go-spew/spew"
"github.com/tendermint/btcwire"
"net"
"strconv"
"sync"
"sync/atomic"
"time"
)
const (
// max protocol version the peer supports.
maxProtocolVersion = 70001
// number of elements the output channels use.
outputBufferSize = 50
// number of seconds of inactivity before we timeout a peer
// that hasn't completed the initial version negotiation.
negotiateTimeoutSeconds = 30
// number of minutes of inactivity before we time out a peer.
idleTimeoutMinutes = 5
// number of minutes since we last sent a message
// requiring a reply before we will ping a host.
pingTimeoutMinutes = 2
)
var (
userAgentName = "tendermintd"
userAgentVersion = fmt.Sprintf("%d.%d.%d", appMajor, appMinor, appPatch)
)
// zeroHash is the zero value hash (all zeros). It is defined as a convenience.
var zeroHash btcwire.ShaHash
// minUint32 is a helper function to return the minimum of two uint32s.
// This avoids a math import and the need to cast to floats.
func minUint32(a, b uint32) uint32 {
if a < b {
return a
}
return b
}
// TODO(davec): Rename and comment this
type outMsg struct {
msg btcwire.Message
doneChan chan bool
}
/*
The overall data flow is split into 2 goroutines.
Inbound messages are read via the inHandler goroutine and generally
dispatched to their own handler.
Outbound messages are queued via QueueMessage.
*/
type peer struct {
server *server
addr *NetAddress
inbound bool
persistent bool
started bool // atomic
quit chan bool
conn net.Conn
connMtx sync.Mutex
disconnected bool // atomic && protected by connMtx
knownAddresses map[string]bool
outputQueue chan outMsg
statMtx sync.Mutex // protects all below here.
protocolVersion uint32
timeConnected time.Time
lastSend time.Time
lastRecv time.Time
bytesReceived uint64
bytesSent uint64
userAgent string
lastPingNonce uint64 // Set to nonce if we have a pending ping.
lastPingTime time.Time // Time we sent last ping.
lastPingMicros int64 // Time for last ping to return.
}
// String returns the peer's address and directionality as a human-readable
// string.
func (p *peer) String() string {
return fmt.Sprintf("%s (%s)", p.addr.String(), directionString(p.inbound))
}
// VersionKnown returns the whether or not the version of a peer is known locally.
// It is safe for concurrent access.
func (p *peer) VersionKnown() bool {
p.statMtx.Lock(); defer p.statMtx.Unlock()
return p.protocolVersion != 0
}
// ProtocolVersion returns the peer protocol version in a manner that is safe
// for concurrent access.
func (p *peer) ProtocolVersion() uint32 {
p.statMtx.Lock(); defer p.statMtx.Unlock()
return p.protocolVersion
}
// pushVersionMsg sends a version message to the connected peer using the
// current state.
func (p *peer) pushVersionMsg() {
_, blockNum, err := p.server.db.NewestSha()
if err != nil { panic(err) }
// Version message.
// TODO: DisableListen -> send zero address
msg := btcwire.NewMsgVersion(
p.server.addrManager.getBestLocalAddress(p.addr), p.addr,
p.server.nonce, int32(blockNum))
msg.AddUserAgent(userAgentName, userAgentVersion)
// Advertise our max supported protocol version.
msg.ProtocolVersion = maxProtocolVersion
p.QueueMessage(msg, nil)
}
// handleVersionMsg is invoked when a peer receives a version bitcoin message
// and is used to negotiate the protocol version details as well as kick start
// the communications.
func (p *peer) handleVersionMsg(msg *btcwire.MsgVersion) {
// Detect self connections.
if msg.Nonce == p.server.nonce {
peerLog.Debugf("Disconnecting peer connected to self %s", p)
p.Disconnect()
return
}
p.statMtx.Lock() // Updating a bunch of stats.
// Limit to one version message per peer.
if p.protocolVersion != 0 {
p.logError("Only one version message per peer is allowed %s.", p)
p.statMtx.Unlock()
p.Disconnect()
return
}
// Negotiate the protocol version.
p.protocolVersion = minUint32(p.protocolVersion, uint32(msg.ProtocolVersion))
peerLog.Debugf("Negotiated protocol version %d for peer %s", p.protocolVersion, p)
// Set the remote peer's user agent.
p.userAgent = msg.UserAgent
p.statMtx.Unlock()
// Inbound connections.
if p.inbound {
// Send version.
p.pushVersionMsg()
}
// Send verack.
p.QueueMessage(btcwire.NewMsgVerAck(), nil)
if p.inbound {
// A peer might not be advertising the same address that it
// actually connected from. One example of why this can happen
// is with NAT. Only add the address to the address manager if
// the addresses agree.
if msg.AddrMe.String() == p.addr.String() {
p.server.addrManager.AddAddress(p.addr, p.addr)
}
} else {
// Request known addresses from the remote peer.
if !cfg.SimNet && p.server.addrManager.NeedMoreAddresses() {
p.QueueMessage(btcwire.NewMsgGetAddr(), nil)
}
}
// Mark the address as a known good address.
p.server.addrManager.MarkGood(p.addr)
// Signal the block manager this peer is a new sync candidate.
p.server.blockManager.NewPeer(p)
// TODO: Relay alerts.
}
// handleGetAddrMsg is invoked when a peer receives a getaddr bitcoin message
// and is used to provide the peer with known addresses from the address
// manager.
func (p *peer) handleGetAddrMsg(msg *btcwire.MsgGetAddr) {
// Don't return any addresses when running on the simulation test
// network. This helps prevent the network from becoming another
// public test network since it will not be able to learn about other
// peers that have not specifically been provided.
if cfg.SimNet {
return
}
// Get the current known addresses from the address manager.
addrCache := p.server.addrManager.AddressCache()
// Push the addresses.
p.pushAddrMsg(addrCache)
}
// pushAddrMsg sends one, or more, addr message(s) to the connected peer using
// the provided addresses.
func (p *peer) pushAddrMsg(addresses []*NetAddress) {
// Nothing to send.
if len(addresses) == 0 { return }
numAdded := 0
msg := btcwire.NewMsgAddr()
for _, addr := range addresses {
// Filter addresses the peer already knows about.
if p.knownAddresses[addr.String()] {
continue
}
// Add the address to the message.
err := msg.AddAddress(addr)
if err != nil { panic(err) } // XXX remove error condition
numAdded++
// Split into multiple messages as needed.
if numAdded > 0 && numAdded%btcwire.MaxAddrPerMsg == 0 {
p.QueueMessage(msg, nil)
// NOTE: This needs to be a new address message and not
// simply call ClearAddresses since the message is a
// pointer and queueing it does not make a copy.
msg = btcwire.NewMsgAddr()
}
}
// Send message with remaining addresses if needed.
if numAdded%btcwire.MaxAddrPerMsg != 0 {
p.QueueMessage(msg, nil)
}
}
// handleAddrMsg is invoked when a peer receives an addr bitcoin message and
// is used to notify the server about advertised addresses.
func (p *peer) handleAddrMsg(msg *btcwire.MsgAddr) {
// Ignore addresses when running on the simulation test network. This
// helps prevent the network from becoming another public test network
// since it will not be able to learn about other peers that have not
// specifically been provided.
if cfg.SimNet {
return
}
// A message that has no addresses is invalid.
if len(msg.AddrList) == 0 {
p.logError("Command [%s] from %s does not contain any addresses", msg.Command(), p)
p.Disconnect()
return
}
for _, addr := range msg.AddrList {
// Set the timestamp to 5 days ago if it's more than 24 hours
// in the future so this address is one of the first to be
// removed when space is needed.
now := time.Now()
if addr.Timestamp.After(now.Add(time.Minute * 10)) {
addr.Timestamp = now.Add(-1 * time.Hour * 24 * 5)
}
// Add address to known addresses for this peer.
p.knownAddresses[addr.String()] = true
}
// Add addresses to server address manager. The address manager handles
// the details of things such as preventing duplicate addresses, max
// addresses, and last seen updates.
// XXX bitcoind gives a 2 hour time penalty here, do we want to do the
// same?
p.server.addrManager.AddAddresses(msg.AddrList, p.addr)
}
func (p *peer) handlePingMsg(msg *btcwire.MsgPing) {
// Include nonce from ping so pong can be identified.
p.QueueMessage(btcwire.NewMsgPong(msg.Nonce), nil)
}
func (p *peer) handlePongMsg(msg *btcwire.MsgPong) {
p.statMtx.Lock(); defer p.statMtx.Unlock()
// Arguably we could use a buffered channel here sending data
// in a fifo manner whenever we send a ping, or a list keeping track of
// the times of each ping. For now we just make a best effort and
// only record stats if it was for the last ping sent. Any preceding
// and overlapping pings will be ignored. It is unlikely to occur
// without large usage of the ping rpc call since we ping
// infrequently enough that if they overlap we would have timed out
// the peer.
if p.lastPingNonce != 0 && msg.Nonce == p.lastPingNonce {
p.lastPingMicros = time.Now().Sub(p.lastPingTime).Nanoseconds()
p.lastPingMicros /= 1000 // convert to usec.
p.lastPingNonce = 0
}
}
// readMessage reads the next bitcoin message from the peer with logging.
func (p *peer) readMessage() (btcwire.Message, []byte, error) {
n, msg, buf, err := btcwire.ReadMessageN(p.conn, p.ProtocolVersion())
p.statMtx.Lock()
p.bytesReceived += uint64(n)
p.statMtx.Unlock()
p.server.AddBytesReceived(uint64(n))
if err != nil {
return nil, nil, err
}
// Use closures to log expensive operations so they are only run when
// the logging level requires it.
peerLog.Debugf("%v", newLogClosure(func() string {
// Debug summary of message.
summary := messageSummary(msg)
if len(summary) > 0 {
summary = " (" + summary + ")"
}
return fmt.Sprintf("Received %v%s from %s", msg.Command(), summary, p)
}))
peerLog.Tracef("%v", newLogClosure(func() string {
return spew.Sdump(msg)
}))
peerLog.Tracef("%v", newLogClosure(func() string {
return spew.Sdump(buf)
}))
return msg, buf, nil
}
// writeMessage sends a bitcoin Message to the peer with logging.
func (p *peer) writeMessage(msg btcwire.Message) {
if p.Disconnected() { return }
if !p.VersionKnown() {
switch msg.(type) {
case *btcwire.MsgVersion:
// This is OK.
default:
// We drop all messages other than version if we
// haven't done the handshake already.
return
}
}
// Use closures to log expensive operations so they are only run when
// the logging level requires it.
peerLog.Debugf("%v", newLogClosure(func() string {
// Debug summary of message.
summary := messageSummary(msg)
if len(summary) > 0 {
summary = " (" + summary + ")"
}
return fmt.Sprintf("Sending %v%s to %s", msg.Command(), summary, p)
}))
peerLog.Tracef("%v", newLogClosure(func() string {
return spew.Sdump(msg)
}))
peerLog.Tracef("%v", newLogClosure(func() string {
var buf bytes.Buffer
err := btcwire.WriteMessage(&buf, msg, p.ProtocolVersion())
if err != nil {
return err.Error()
}
return spew.Sdump(buf.Bytes())
}))
// Write the message to the peer.
n, err := btcwire.WriteMessageN(p.conn, msg, p.ProtocolVersion())
p.statMtx.Lock()
p.bytesSent += uint64(n)
p.statMtx.Unlock()
p.server.AddBytesSent(uint64(n))
if err != nil {
p.Disconnect()
p.logError("Can't send message to %s: %v", p, err)
return
}
}
// inHandler handles all incoming messages for the peer. It must be run as a
// goroutine.
func (p *peer) inHandler() {
// Peers must complete the initial version negotiation within a shorter
// timeframe than a general idle timeout. The timer is then reset below
// to idleTimeoutMinutes for all future messages.
idleTimer := time.AfterFunc(negotiateTimeoutSeconds*time.Second, func() {
if p.VersionKnown() {
peerLog.Warnf("Peer %s no answer for %d minutes, disconnecting", p, idleTimeoutMinutes)
}
p.Disconnect()
})
out:
for !p.Disconnected() {
rmsg, buf, err := p.readMessage()
// Stop the timer now, if we go around again we will reset it.
idleTimer.Stop()
if err != nil {
if !p.Disconnected() {
p.logError("Can't read message from %s: %v", p, err)
}
break out
}
p.statMtx.Lock()
p.lastRecv = time.Now()
p.statMtx.Unlock()
// Ensure version message comes first.
if _, ok := rmsg.(*btcwire.MsgVersion); !ok && !p.VersionKnown() {
p.logError("A version message must precede all others")
break out
}
// Handle each supported message type.
markGood := false
switch msg := rmsg.(type) {
case *btcwire.MsgVersion:
p.handleVersionMsg(msg)
case *btcwire.MsgVerAck:
// Do nothing.
case *btcwire.MsgGetAddr:
p.handleGetAddrMsg(msg)
case *btcwire.MsgAddr:
p.handleAddrMsg(msg)
markGood = true
case *btcwire.MsgPing:
p.handlePingMsg(msg)
markGood = true
case *btcwire.MsgPong:
p.handlePongMsg(msg)
case *btcwire.MsgAlert:
p.server.BroadcastMessage(msg, p)
case *btcwire.MsgNotFound:
// TODO(davec): Ignore this for now, but ultimately
// it should probably be used to detect when something
// we requested needs to be re-requested from another
// peer.
default:
peerLog.Debugf("Received unhandled message of type %v: Fix Me", rmsg.Command())
}
// Mark the address as currently connected and working as of
// now if one of the messages that trigger it was processed.
if markGood && !p.Disconnected() {
if p.addr == nil {
peerLog.Warnf("we're getting stuff before we got a version message. that's bad")
continue
}
p.server.addrManager.MarkGood(p.addr)
}
// ok we got a message, reset the timer.
// timer just calls p.Disconnect() after logging.
idleTimer.Reset(idleTimeoutMinutes * time.Minute)
}
idleTimer.Stop()
// Ensure connection is closed and notify the server that the peer is done.
p.Disconnect()
p.server.donePeers <- p
// Only tell block manager we are gone if we ever told it we existed.
if p.VersionKnown() {
p.server.blockManager.DonePeer(p)
}
peerLog.Tracef("Peer input handler done for %s", p)
}
// outHandler handles all outgoing messages for the peer. It must be run as a
// goroutine. It uses a buffered channel to serialize output messages while
// allowing the sender to continue running asynchronously.
func (p *peer) outHandler() {
pingTimer := time.AfterFunc(pingTimeoutMinutes*time.Minute, func() {
nonce, err := btcwire.RandomUint64()
if err != nil {
peerLog.Errorf("Not sending ping on timeout to %s: %v",
p, err)
return
}
p.QueueMessage(btcwire.NewMsgPing(nonce), nil)
})
out:
for {
select {
case msg := <-p.outputQueue:
// If the message is one we should get a reply for
// then reset the timer, we only want to send pings
// when otherwise we would not receive a reply from
// the peer.
peerLog.Tracef("%s: received from outputQueue", p)
reset := true
switch m := msg.msg.(type) {
case *btcwire.MsgVersion:
// should get an ack
case *btcwire.MsgGetAddr:
// should get addresses
case *btcwire.MsgPing:
// expects pong
// Also set up statistics.
p.statMtx.Lock()
p.lastPingNonce = m.Nonce
p.lastPingTime = time.Now()
p.statMtx.Unlock()
default:
// Not one of the above, no sure reply.
// We want to ping if nothing else
// interesting happens.
reset = false
}
if reset {
pingTimer.Reset(pingTimeoutMinutes * time.Minute)
}
p.writeMessage(msg.msg)
p.statMtx.Lock()
p.lastSend = time.Now()
p.statMtx.Unlock()
if msg.doneChan != nil {
msg.doneChan <- true
}
case <-p.quit:
break out
}
}
pingTimer.Stop()
// Drain outputQueue
for msg := range p.outputQueue {
if msg.doneChan != nil {
msg.doneChan <- false
}
}
peerLog.Tracef("Peer output handler done for %s", p)
}
// QueueMessage adds the passed bitcoin message to the peer outputQueue. It
// uses a buffered channel to communicate with the output handler goroutine so
// it is automatically rate limited and safe for concurrent access.
func (p *peer) QueueMessage(msg btcwire.Message, doneChan chan bool) {
// Avoid risk of deadlock if goroutine already exited. The goroutine
// we will be sending to hangs around until it knows for a fact that
// it is marked as disconnected. *then* it drains the channels.
if p.Disconnected() {
// avoid deadlock...
if doneChan != nil {
go func() {
doneChan <- false
}()
}
return
}
p.outputQueue <- outMsg{msg: msg, doneChan: doneChan}
}
// True if is (or will become) disconnected.
func (p *peer) Disconnected() bool {
return atomic.LoadInt32(&p.disconnected) == 1
}
// Disconnects the peer by closing the connection. It also sets
// a flag so the impending shutdown can be detected.
func (p *peer) Disconnect() {
p.connMtx.Lock(); defer p.connMtx.Unlock()
// did we win the race?
if atomic.AddInt32(&p.disconnected, 1) != 1 {
return
}
peerLog.Tracef("disconnecting %s", p)
close(p.quit)
if p.conn != nil {
p.conn.Close()
}
}
// Sets the connection & starts
func (p *peer) StartWithConnection(conn *net.Conn) {
p.connMtx.Lock(); defer p.connMtx.Unlock()
if p.conn != nil { panic("Conn already set") }
if atomic.LoadInt32(&p.disconnected) == 1 { return }
peerLog.Debugf("Connected to %s", conn.RemoteAddr())
p.timeConnected = time.Now()
p.conn = conn
p.Start()
}
// Start begins processing input and output messages. It also sends the initial
// version message for outbound connections to start the negotiation process.
func (p *peer) Start() error {
// Already started?
if atomic.AddInt32(&p.started, 1) != 1 {
return nil
}
peerLog.Tracef("Starting peer %s", p)
// Send an initial version message if this is an outbound connection.
if !p.inbound {
p.pushVersionMsg()
}
// Start processing input and output.
go p.inHandler()
go p.outHandler()
return nil
}
// Shutdown gracefully shuts down the peer by disconnecting it.
func (p *peer) Shutdown() {
peerLog.Tracef("Shutdown peer %s", p)
p.Disconnect()
}
// newPeerBase returns a new base peer for the provided server and inbound flag.
// This is used by the newInboundPeer and newOutboundPeer functions to perform
// base setup needed by both types of peers.
func newPeerBase(s *server, inbound bool) *peer {
p := peer{
server: s,
protocolVersion: maxProtocolVersion,
inbound: inbound,
knownAddresses: make(map[string]bool),
outputQueue: make(chan outMsg, outputBufferSize),
quit: make(chan bool),
}
return &p
}
// newPeer returns a new inbound bitcoin peer for the provided server and
// connection. Use Start to begin processing incoming and outgoing messages.
func newInboundPeer(s *server, conn net.Conn) *peer {
addr := NewNetAddress(conn.RemoteAddr())
// XXX What if p.addr doesn't match (to be) reported addr due to NAT?
s.addrManager.MarkAttempt(addr)
p := newPeerBase(s, true)
p.conn = conn
p.addr = addr
p.timeConnected = time.Now()
return p
}
// newOutbountPeer returns a new outbound bitcoin peer for the provided server and
// address and connects to it asynchronously. If the connection is successful
// then the peer will also be started.
func newOutboundPeer(s *server, addr *NetAddress, persistent bool) *peer {
p := newPeerBase(s, false)
p.addr = addr
p.persistent = persistent
go func() {
// Mark this as one attempt, regardless of # of reconnects.
s.addrManager.MarkAttempt(p.addr)
retryCount := 0
// Attempt to connect to the peer. If the connection fails and
// this is a persistent connection, retry after the retry
// interval.
for {
peerLog.Debugf("Attempting to connect to %s", addr)
conn, err := addr.Dial()
if err == nil {
p.StartWithConnection(conn)
return
} else {
retryCount++
peerLog.Debugf("Failed to connect to %s: %v", addr, err)
if !persistent {
p.server.donePeers <- p
return
}
scaledInterval := connectionRetryInterval.Nanoseconds() * retryCount / 2
scaledDuration := time.Duration(scaledInterval)
peerLog.Debugf("Retrying connection to %s in %s", addr, scaledDuration)
time.Sleep(scaledDuration)
continue
}
}
}()
return p
}
// logError makes sure that we only log errors loudly on user peers.
func (p *peer) logError(fmt string, args ...interface{}) {
if p.persistent {
peerLog.Errorf(fmt, args...)
} else {
peerLog.Debugf(fmt, args...)
}
}