/*
|
|
Computes a deterministic minimal height merkle tree hash.
|
|
If the number of items is not a power of two, some leaves
|
|
will be at different levels. Tries to keep both sides of
|
|
the tree the same size, but the left may be one greater.
|
|
|
|
Use this for short deterministic trees, such as the validator list.
|
|
For larger datasets, use IAVLTree.
|
|
|
|
*
|
|
/ \
|
|
/ \
|
|
/ \
|
|
/ \
|
|
* *
|
|
/ \ / \
|
|
/ \ / \
|
|
/ \ / \
|
|
* * * h6
|
|
/ \ / \ / \
|
|
h0 h1 h2 h3 h4 h5
|
|
|
|
*/
|
|
|
|
package merkle
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"sort"
|
|
|
|
"golang.org/x/crypto/ripemd160"
|
|
|
|
"github.com/tendermint/go-wire"
|
|
. "github.com/tendermint/tmlibs/common"
|
|
)
|
|
|
|
func SimpleHashFromTwoHashes(left []byte, right []byte) []byte {
|
|
var n int
|
|
var err error
|
|
var hasher = ripemd160.New()
|
|
wire.WriteByteSlice(left, hasher, &n, &err)
|
|
wire.WriteByteSlice(right, hasher, &n, &err)
|
|
if err != nil {
|
|
PanicCrisis(err)
|
|
}
|
|
return hasher.Sum(nil)
|
|
}
|
|
|
|
func SimpleHashFromHashes(hashes [][]byte) []byte {
|
|
// Recursive impl.
|
|
switch len(hashes) {
|
|
case 0:
|
|
return nil
|
|
case 1:
|
|
return hashes[0]
|
|
default:
|
|
left := SimpleHashFromHashes(hashes[:(len(hashes)+1)/2])
|
|
right := SimpleHashFromHashes(hashes[(len(hashes)+1)/2:])
|
|
return SimpleHashFromTwoHashes(left, right)
|
|
}
|
|
}
|
|
|
|
// Convenience for SimpleHashFromHashes.
|
|
func SimpleHashFromBinaries(items []interface{}) []byte {
|
|
hashes := make([][]byte, len(items))
|
|
for i, item := range items {
|
|
hashes[i] = SimpleHashFromBinary(item)
|
|
}
|
|
return SimpleHashFromHashes(hashes)
|
|
}
|
|
|
|
// General Convenience
|
|
func SimpleHashFromBinary(item interface{}) []byte {
|
|
hasher, n, err := ripemd160.New(), new(int), new(error)
|
|
wire.WriteBinary(item, hasher, n, err)
|
|
if *err != nil {
|
|
PanicCrisis(err)
|
|
}
|
|
return hasher.Sum(nil)
|
|
}
|
|
|
|
// Convenience for SimpleHashFromHashes.
|
|
func SimpleHashFromHashables(items []Hashable) []byte {
|
|
hashes := make([][]byte, len(items))
|
|
for i, item := range items {
|
|
hash := item.Hash()
|
|
hashes[i] = hash
|
|
}
|
|
return SimpleHashFromHashes(hashes)
|
|
}
|
|
|
|
// Convenience for SimpleHashFromHashes.
|
|
func SimpleHashFromMap(m map[string]interface{}) []byte {
|
|
kpPairsH := MakeSortedKVPairs(m)
|
|
return SimpleHashFromHashables(kpPairsH)
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------
|
|
|
|
/* Convenience struct for key-value pairs.
|
|
A list of KVPairs is hashed via `SimpleHashFromHashables`.
|
|
NOTE: Each `Value` is encoded for hashing without extra type information,
|
|
so the user is presumed to be aware of the Value types.
|
|
*/
|
|
type KVPair struct {
|
|
Key string
|
|
Value interface{}
|
|
}
|
|
|
|
func (kv KVPair) Hash() []byte {
|
|
hasher, n, err := ripemd160.New(), new(int), new(error)
|
|
wire.WriteString(kv.Key, hasher, n, err)
|
|
if kvH, ok := kv.Value.(Hashable); ok {
|
|
wire.WriteByteSlice(kvH.Hash(), hasher, n, err)
|
|
} else {
|
|
wire.WriteBinary(kv.Value, hasher, n, err)
|
|
}
|
|
if *err != nil {
|
|
PanicSanity(*err)
|
|
}
|
|
return hasher.Sum(nil)
|
|
}
|
|
|
|
type KVPairs []KVPair
|
|
|
|
func (kvps KVPairs) Len() int { return len(kvps) }
|
|
func (kvps KVPairs) Less(i, j int) bool { return kvps[i].Key < kvps[j].Key }
|
|
func (kvps KVPairs) Swap(i, j int) { kvps[i], kvps[j] = kvps[j], kvps[i] }
|
|
func (kvps KVPairs) Sort() { sort.Sort(kvps) }
|
|
|
|
func MakeSortedKVPairs(m map[string]interface{}) []Hashable {
|
|
kvPairs := []KVPair{}
|
|
for k, v := range m {
|
|
kvPairs = append(kvPairs, KVPair{k, v})
|
|
}
|
|
KVPairs(kvPairs).Sort()
|
|
kvPairsH := []Hashable{}
|
|
for _, kvp := range kvPairs {
|
|
kvPairsH = append(kvPairsH, kvp)
|
|
}
|
|
return kvPairsH
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------
|
|
|
|
type SimpleProof struct {
|
|
Aunts [][]byte `json:"aunts"` // Hashes from leaf's sibling to a root's child.
|
|
}
|
|
|
|
// proofs[0] is the proof for items[0].
|
|
func SimpleProofsFromHashables(items []Hashable) (rootHash []byte, proofs []*SimpleProof) {
|
|
trails, rootSPN := trailsFromHashables(items)
|
|
rootHash = rootSPN.Hash
|
|
proofs = make([]*SimpleProof, len(items))
|
|
for i, trail := range trails {
|
|
proofs[i] = &SimpleProof{
|
|
Aunts: trail.FlattenAunts(),
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// Verify that leafHash is a leaf hash of the simple-merkle-tree
|
|
// which hashes to rootHash.
|
|
func (sp *SimpleProof) Verify(index int, total int, leafHash []byte, rootHash []byte) bool {
|
|
computedHash := computeHashFromAunts(index, total, leafHash, sp.Aunts)
|
|
if computedHash == nil {
|
|
return false
|
|
}
|
|
if !bytes.Equal(computedHash, rootHash) {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
func (sp *SimpleProof) String() string {
|
|
return sp.StringIndented("")
|
|
}
|
|
|
|
func (sp *SimpleProof) StringIndented(indent string) string {
|
|
return fmt.Sprintf(`SimpleProof{
|
|
%s Aunts: %X
|
|
%s}`,
|
|
indent, sp.Aunts,
|
|
indent)
|
|
}
|
|
|
|
// Use the leafHash and innerHashes to get the root merkle hash.
|
|
// If the length of the innerHashes slice isn't exactly correct, the result is nil.
|
|
func computeHashFromAunts(index int, total int, leafHash []byte, innerHashes [][]byte) []byte {
|
|
// Recursive impl.
|
|
if index >= total {
|
|
return nil
|
|
}
|
|
switch total {
|
|
case 0:
|
|
PanicSanity("Cannot call computeHashFromAunts() with 0 total")
|
|
return nil
|
|
case 1:
|
|
if len(innerHashes) != 0 {
|
|
return nil
|
|
}
|
|
return leafHash
|
|
default:
|
|
if len(innerHashes) == 0 {
|
|
return nil
|
|
}
|
|
numLeft := (total + 1) / 2
|
|
if index < numLeft {
|
|
leftHash := computeHashFromAunts(index, numLeft, leafHash, innerHashes[:len(innerHashes)-1])
|
|
if leftHash == nil {
|
|
return nil
|
|
}
|
|
return SimpleHashFromTwoHashes(leftHash, innerHashes[len(innerHashes)-1])
|
|
} else {
|
|
rightHash := computeHashFromAunts(index-numLeft, total-numLeft, leafHash, innerHashes[:len(innerHashes)-1])
|
|
if rightHash == nil {
|
|
return nil
|
|
}
|
|
return SimpleHashFromTwoHashes(innerHashes[len(innerHashes)-1], rightHash)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Helper structure to construct merkle proof.
|
|
// The node and the tree is thrown away afterwards.
|
|
// Exactly one of node.Left and node.Right is nil, unless node is the root, in which case both are nil.
|
|
// node.Parent.Hash = hash(node.Hash, node.Right.Hash) or
|
|
// hash(node.Left.Hash, node.Hash), depending on whether node is a left/right child.
|
|
type SimpleProofNode struct {
|
|
Hash []byte
|
|
Parent *SimpleProofNode
|
|
Left *SimpleProofNode // Left sibling (only one of Left,Right is set)
|
|
Right *SimpleProofNode // Right sibling (only one of Left,Right is set)
|
|
}
|
|
|
|
// Starting from a leaf SimpleProofNode, FlattenAunts() will return
|
|
// the inner hashes for the item corresponding to the leaf.
|
|
func (spn *SimpleProofNode) FlattenAunts() [][]byte {
|
|
// Nonrecursive impl.
|
|
innerHashes := [][]byte{}
|
|
for spn != nil {
|
|
if spn.Left != nil {
|
|
innerHashes = append(innerHashes, spn.Left.Hash)
|
|
} else if spn.Right != nil {
|
|
innerHashes = append(innerHashes, spn.Right.Hash)
|
|
} else {
|
|
break
|
|
}
|
|
spn = spn.Parent
|
|
}
|
|
return innerHashes
|
|
}
|
|
|
|
// trails[0].Hash is the leaf hash for items[0].
|
|
// trails[i].Parent.Parent....Parent == root for all i.
|
|
func trailsFromHashables(items []Hashable) (trails []*SimpleProofNode, root *SimpleProofNode) {
|
|
// Recursive impl.
|
|
switch len(items) {
|
|
case 0:
|
|
return nil, nil
|
|
case 1:
|
|
trail := &SimpleProofNode{items[0].Hash(), nil, nil, nil}
|
|
return []*SimpleProofNode{trail}, trail
|
|
default:
|
|
lefts, leftRoot := trailsFromHashables(items[:(len(items)+1)/2])
|
|
rights, rightRoot := trailsFromHashables(items[(len(items)+1)/2:])
|
|
rootHash := SimpleHashFromTwoHashes(leftRoot.Hash, rightRoot.Hash)
|
|
root := &SimpleProofNode{rootHash, nil, nil, nil}
|
|
leftRoot.Parent = root
|
|
leftRoot.Right = rightRoot
|
|
rightRoot.Parent = root
|
|
rightRoot.Left = leftRoot
|
|
return append(lefts, rights...), root
|
|
}
|
|
}
|