You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

371 lines
12 KiB

package types
import (
"bytes"
"crypto/sha256"
"errors"
"fmt"
"sort"
abci "github.com/tendermint/tendermint/abci/types"
"github.com/tendermint/tendermint/crypto/merkle"
"github.com/tendermint/tendermint/crypto/tmhash"
tmbytes "github.com/tendermint/tendermint/libs/bytes"
tmproto "github.com/tendermint/tendermint/proto/tendermint/types"
)
// Tx is an arbitrary byte array.
// NOTE: Tx has no types at this level, so when wire encoded it's just length-prefixed.
// Might we want types here ?
type Tx []byte
// Key produces a fixed-length key for use in indexing.
func (tx Tx) Key() TxKey { return sha256.Sum256(tx) }
// Hash computes the TMHASH hash of the wire encoded transaction.
func (tx Tx) Hash() []byte { return tmhash.Sum(tx) }
// String returns the hex-encoded transaction as a string.
func (tx Tx) String() string { return fmt.Sprintf("Tx{%X}", []byte(tx)) }
// Txs is a slice of Tx.
type Txs []Tx
// Hash returns the Merkle root hash of the transaction hashes.
// i.e. the leaves of the tree are the hashes of the txs.
func (txs Txs) Hash() []byte {
hl := txs.hashList()
return merkle.HashFromByteSlices(hl)
}
// Index returns the index of this transaction in the list, or -1 if not found
func (txs Txs) Index(tx Tx) int {
for i := range txs {
if bytes.Equal(txs[i], tx) {
return i
}
}
return -1
}
// IndexByHash returns the index of this transaction hash in the list, or -1 if not found
func (txs Txs) IndexByHash(hash []byte) int {
for i := range txs {
if bytes.Equal(txs[i].Hash(), hash) {
return i
}
}
return -1
}
func (txs Txs) Proof(i int) TxProof {
hl := txs.hashList()
root, proofs := merkle.ProofsFromByteSlices(hl)
return TxProof{
RootHash: root,
Data: txs[i],
Proof: *proofs[i],
}
}
func (txs Txs) hashList() [][]byte {
hl := make([][]byte, len(txs))
for i := 0; i < len(txs); i++ {
hl[i] = txs[i].Hash()
}
return hl
}
// Txs is a slice of transactions. Sorting a Txs value orders the transactions
// lexicographically.
func (txs Txs) Len() int { return len(txs) }
func (txs Txs) Swap(i, j int) { txs[i], txs[j] = txs[j], txs[i] }
func (txs Txs) Less(i, j int) bool {
return bytes.Compare(txs[i], txs[j]) == -1
}
// ToSliceOfBytes converts a Txs to slice of byte slices.
func (txs Txs) ToSliceOfBytes() [][]byte {
txBzs := make([][]byte, len(txs))
for i := 0; i < len(txs); i++ {
txBzs[i] = txs[i]
}
return txBzs
}
// TxRecordSet contains indexes into an underlying set of transactions.
// These indexes are useful for validating and working with a list of TxRecords
// from the PrepareProposal response.
//
// Only one copy of the original data is referenced by all of the indexes but a
// transaction may appear in multiple indexes.
type TxRecordSet struct {
// all holds the complete list of all transactions from the original list of
// TxRecords.
all Txs
// included is an index of the transactions that will be included in the block
// and is constructed from the list of both added and unmodified transactions.
// included maintains the original order that the transactions were present
// in the list of TxRecords.
included Txs
// added, unmodified, removed, and unknown are indexes for each of the actions
// that may be supplied with a transaction.
//
// Because each transaction only has one action, it can be referenced by
// at most 3 indexes in this data structure: the action-specific index, the
// included index, and the all index.
added Txs
unmodified Txs
removed Txs
unknown Txs
}
// NewTxRecordSet constructs a new set from the given transaction records.
// The contents of the input transactions are shared by the set, and must not
// be modified during the lifetime of the set.
func NewTxRecordSet(trs []*abci.TxRecord) TxRecordSet {
txrSet := TxRecordSet{
all: make([]Tx, len(trs)),
}
for i, tr := range trs {
txrSet.all[i] = Tx(tr.Tx)
// The following set of assignments do not allocate new []byte, they create
// pointers to the already allocated slice.
switch tr.GetAction() {
case abci.TxRecord_UNKNOWN:
txrSet.unknown = append(txrSet.unknown, txrSet.all[i])
case abci.TxRecord_UNMODIFIED:
txrSet.unmodified = append(txrSet.unmodified, txrSet.all[i])
txrSet.included = append(txrSet.included, txrSet.all[i])
case abci.TxRecord_ADDED:
txrSet.added = append(txrSet.added, txrSet.all[i])
txrSet.included = append(txrSet.included, txrSet.all[i])
case abci.TxRecord_REMOVED:
txrSet.removed = append(txrSet.removed, txrSet.all[i])
}
}
return txrSet
}
// AddedTxs returns the transactions marked for inclusion in a block. This
// list maintains the order that the transactions were included in the list of
// TxRecords that were used to construct the TxRecordSet.
func (t TxRecordSet) IncludedTxs() []Tx {
return t.included
}
// AddedTxs returns the transactions added by the application.
func (t TxRecordSet) AddedTxs() []Tx {
return t.added
}
// RemovedTxs returns the transactions marked for removal by the application.
func (t TxRecordSet) RemovedTxs() []Tx {
return t.removed
}
// Validate checks that the record set was correctly constructed from the original
// list of transactions.
func (t TxRecordSet) Validate(maxSizeBytes int64, otxs Txs) error {
if len(t.unknown) > 0 {
return fmt.Errorf("%d transactions marked unknown (first unknown hash: %x)", len(t.unknown), t.unknown[0].Hash())
}
// The following validation logic performs a set of sorts on the data in the TxRecordSet indexes.
// It sorts the original transaction list, otxs, once.
// It sorts the new transaction list twice: once when sorting 'all', the total list,
// and once by sorting the set of the added, removed, and unmodified transactions indexes,
// which, when combined, comprise the complete list of modified transactions.
//
// The original list is iterated once and the modified list is iterated multiple times,
// one time alongside each of the 3 indexes for a total of 4 iterations of the modified list.
// Asymptotically, this yields a total runtime of O(N*log(N) + N + 2*M*log(M) + 4*M),
// in the input size of the original list and the input size of the new list respectively.
// A 2 * M performance gain is possible by iterating all of the indexes simultaneously
// alongside the full list, but the multiple iterations were preferred to be more
// readable and maintainable.
// Sort a copy of the complete transaction slice so we can check for
// duplication. The copy is so we do not change the original ordering.
// Only the slices are copied, the transaction contents are shared.
allCopy := sortedCopy(t.all)
var size int64
for i, cur := range allCopy {
size += int64(len(cur))
if size > maxSizeBytes {
return fmt.Errorf("transaction data size %d exceeds maximum %d", size, maxSizeBytes)
}
// allCopy is sorted, so any duplicated data will be adjacent.
if i+1 < len(allCopy) && bytes.Equal(cur, allCopy[i+1]) {
return fmt.Errorf("found duplicate transaction with hash: %x", cur.Hash())
}
}
// create copies of each of the action-specific indexes so that order of the original
// indexes can be preserved.
addedCopy := sortedCopy(t.added)
removedCopy := sortedCopy(t.removed)
unmodifiedCopy := sortedCopy(t.unmodified)
// make a defensive copy of otxs so that the order of
// the caller's data is not altered.
otxsCopy := sortedCopy(otxs)
if ix, ok := containsAllTxs(otxsCopy, unmodifiedCopy); !ok {
return fmt.Errorf("new transaction incorrectly marked as removed, transaction hash: %x", unmodifiedCopy[ix].Hash())
}
if ix, ok := containsAllTxs(otxsCopy, removedCopy); !ok {
return fmt.Errorf("new transaction incorrectly marked as removed, transaction hash: %x", removedCopy[ix].Hash())
}
if ix, ok := containsAnyTxs(otxsCopy, addedCopy); ok {
return fmt.Errorf("existing transaction incorrectly marked as added, transaction hash: %x", addedCopy[ix].Hash())
}
return nil
}
func sortedCopy(txs Txs) Txs {
cp := make(Txs, len(txs))
copy(cp, txs)
sort.Sort(cp)
return cp
}
// containsAnyTxs checks that list a contains one of the transactions in list
// b. If a match is found, the index in b of the matching transaction is returned.
// Both lists must be sorted.
func containsAnyTxs(a, b []Tx) (int, bool) {
aix, bix := 0, 0
nextA:
for ; aix < len(a); aix++ {
for bix < len(b) {
switch bytes.Compare(b[bix], a[aix]) {
case 0:
return bix, true
case -1:
bix++
// we've reached the end of b, and the last value in b was
// smaller than the value under the iterator of a.
// a's values never get smaller, so we know there are no more matches
// in the list. We can terminate the iteration here.
if bix == len(b) {
return -1, false
}
case 1:
continue nextA
}
}
}
return -1, false
}
// containsAllTxs checks that super contains all of the transactions in the sub
// list. If not all values in sub are present in super, the index in sub of the
// first Tx absent from super is returned.
func containsAllTxs(super, sub []Tx) (int, bool) {
// The following iteration assumes sorted lists.
// The checks ensure that all the values in the sorted sub list are present in the sorted super list.
//
// We compare the value under the sub iterator to the value
// under the super iterator. If they match, we advance the
// sub iterator one position. If they don't match, then the value under
// the sub iterator should be greater.
// If it is not, then there is a value in the the sub list that is not present in the
// super list.
subIx := 0
for _, cur := range super {
if subIx == len(sub) {
return -1, true
}
switch bytes.Compare(sub[subIx], cur) {
case 0:
subIx++
case -1:
return subIx, false
}
}
// Check that the loop visited all values of the transactions from sub.
// If it did not, then there are values present in these indexes that were not
// present in the super list of transactions.
if subIx != len(sub) {
return subIx, false
}
return -1, true
}
// TxProof represents a Merkle proof of the presence of a transaction in the Merkle tree.
type TxProof struct {
RootHash tmbytes.HexBytes `json:"root_hash"`
Data Tx `json:"data"`
Proof merkle.Proof `json:"proof"`
}
// Leaf returns the hash(tx), which is the leaf in the merkle tree which this proof refers to.
func (tp TxProof) Leaf() []byte {
return tp.Data.Hash()
}
// Validate verifies the proof. It returns nil if the RootHash matches the dataHash argument,
// and if the proof is internally consistent. Otherwise, it returns a sensible error.
func (tp TxProof) Validate(dataHash []byte) error {
if !bytes.Equal(dataHash, tp.RootHash) {
return errors.New("proof matches different data hash")
}
if tp.Proof.Index < 0 {
return errors.New("proof index cannot be negative")
}
if tp.Proof.Total <= 0 {
return errors.New("proof total must be positive")
}
valid := tp.Proof.Verify(tp.RootHash, tp.Leaf())
if valid != nil {
return errors.New("proof is not internally consistent")
}
return nil
}
func (tp TxProof) ToProto() tmproto.TxProof {
pbProof := tp.Proof.ToProto()
pbtp := tmproto.TxProof{
RootHash: tp.RootHash,
Data: tp.Data,
Proof: pbProof,
}
return pbtp
}
func TxProofFromProto(pb tmproto.TxProof) (TxProof, error) {
pbProof, err := merkle.ProofFromProto(pb.Proof)
if err != nil {
return TxProof{}, err
}
pbtp := TxProof{
RootHash: pb.RootHash,
Data: pb.Data,
Proof: *pbProof,
}
return pbtp, nil
}
// ComputeProtoSizeForTxs wraps the transactions in tmproto.Data{} and calculates the size.
// https://developers.google.com/protocol-buffers/docs/encoding
func ComputeProtoSizeForTxs(txs []Tx) int64 {
data := Data{Txs: txs}
pdData := data.ToProto()
return int64(pdData.Size())
}