|
package p2p
|
|
|
|
import (
|
|
"context"
|
|
"errors"
|
|
"fmt"
|
|
"math"
|
|
"math/rand"
|
|
"sort"
|
|
"sync"
|
|
"time"
|
|
|
|
"github.com/gogo/protobuf/proto"
|
|
"github.com/google/orderedcode"
|
|
dbm "github.com/tendermint/tm-db"
|
|
|
|
tmsync "github.com/tendermint/tendermint/internal/libs/sync"
|
|
p2pproto "github.com/tendermint/tendermint/proto/tendermint/p2p"
|
|
"github.com/tendermint/tendermint/types"
|
|
)
|
|
|
|
const (
|
|
// retryNever is returned by retryDelay() when retries are disabled.
|
|
retryNever time.Duration = math.MaxInt64
|
|
)
|
|
|
|
// PeerStatus is a peer status.
|
|
//
|
|
// The peer manager has many more internal states for a peer (e.g. dialing,
|
|
// connected, evicting, and so on), which are tracked separately. PeerStatus is
|
|
// for external use outside of the peer manager.
|
|
type PeerStatus string
|
|
|
|
const (
|
|
PeerStatusUp PeerStatus = "up" // connected and ready
|
|
PeerStatusDown PeerStatus = "down" // disconnected
|
|
PeerStatusGood PeerStatus = "good" // peer observed as good
|
|
PeerStatusBad PeerStatus = "bad" // peer observed as bad
|
|
)
|
|
|
|
// PeerScore is a numeric score assigned to a peer (higher is better).
|
|
type PeerScore uint8
|
|
|
|
const (
|
|
PeerScorePersistent PeerScore = math.MaxUint8 // persistent peers
|
|
)
|
|
|
|
// PeerUpdate is a peer update event sent via PeerUpdates.
|
|
type PeerUpdate struct {
|
|
NodeID types.NodeID
|
|
Status PeerStatus
|
|
}
|
|
|
|
// PeerUpdates is a peer update subscription with notifications about peer
|
|
// events (currently just status changes).
|
|
type PeerUpdates struct {
|
|
routerUpdatesCh chan PeerUpdate
|
|
reactorUpdatesCh chan PeerUpdate
|
|
}
|
|
|
|
// NewPeerUpdates creates a new PeerUpdates subscription. It is primarily for
|
|
// internal use, callers should typically use PeerManager.Subscribe(). The
|
|
// subscriber must call Close() when done.
|
|
func NewPeerUpdates(updatesCh chan PeerUpdate, buf int) *PeerUpdates {
|
|
return &PeerUpdates{
|
|
reactorUpdatesCh: updatesCh,
|
|
routerUpdatesCh: make(chan PeerUpdate, buf),
|
|
}
|
|
}
|
|
|
|
// Updates returns a channel for consuming peer updates.
|
|
func (pu *PeerUpdates) Updates() <-chan PeerUpdate {
|
|
return pu.reactorUpdatesCh
|
|
}
|
|
|
|
// SendUpdate pushes information about a peer into the routing layer,
|
|
// presumably from a peer.
|
|
func (pu *PeerUpdates) SendUpdate(ctx context.Context, update PeerUpdate) {
|
|
select {
|
|
case <-ctx.Done():
|
|
case pu.routerUpdatesCh <- update:
|
|
}
|
|
}
|
|
|
|
// PeerManagerOptions specifies options for a PeerManager.
|
|
type PeerManagerOptions struct {
|
|
// PersistentPeers are peers that we want to maintain persistent connections
|
|
// to. These will be scored higher than other peers, and if
|
|
// MaxConnectedUpgrade is non-zero any lower-scored peers will be evicted if
|
|
// necessary to make room for these.
|
|
PersistentPeers []types.NodeID
|
|
|
|
// MaxPeers is the maximum number of peers to track information about, i.e.
|
|
// store in the peer store. When exceeded, the lowest-scored unconnected peers
|
|
// will be deleted. 0 means no limit.
|
|
MaxPeers uint16
|
|
|
|
// MaxConnected is the maximum number of connected peers (inbound and
|
|
// outbound). 0 means no limit.
|
|
MaxConnected uint16
|
|
|
|
// MaxConnectedUpgrade is the maximum number of additional connections to
|
|
// use for probing any better-scored peers to upgrade to when all connection
|
|
// slots are full. 0 disables peer upgrading.
|
|
//
|
|
// For example, if we are already connected to MaxConnected peers, but we
|
|
// know or learn about better-scored peers (e.g. configured persistent
|
|
// peers) that we are not connected too, then we can probe these peers by
|
|
// using up to MaxConnectedUpgrade connections, and once connected evict the
|
|
// lowest-scored connected peers. This also works for inbound connections,
|
|
// i.e. if a higher-scored peer attempts to connect to us, we can accept
|
|
// the connection and evict a lower-scored peer.
|
|
MaxConnectedUpgrade uint16
|
|
|
|
// MinRetryTime is the minimum time to wait between retries. Retry times
|
|
// double for each retry, up to MaxRetryTime. 0 disables retries.
|
|
MinRetryTime time.Duration
|
|
|
|
// MaxRetryTime is the maximum time to wait between retries. 0 means
|
|
// no maximum, in which case the retry time will keep doubling.
|
|
MaxRetryTime time.Duration
|
|
|
|
// MaxRetryTimePersistent is the maximum time to wait between retries for
|
|
// peers listed in PersistentPeers. 0 uses MaxRetryTime instead.
|
|
MaxRetryTimePersistent time.Duration
|
|
|
|
// RetryTimeJitter is the upper bound of a random interval added to
|
|
// retry times, to avoid thundering herds. 0 disables jitter.
|
|
RetryTimeJitter time.Duration
|
|
|
|
// PeerScores sets fixed scores for specific peers. It is mainly used
|
|
// for testing. A score of 0 is ignored.
|
|
PeerScores map[types.NodeID]PeerScore
|
|
|
|
// PrivatePeerIDs defines a set of NodeID objects which the PEX reactor will
|
|
// consider private and never gossip.
|
|
PrivatePeers map[types.NodeID]struct{}
|
|
|
|
// SelfAddress is the address that will be advertised to peers for them to dial back to us.
|
|
// If Hostname and Port are unset, Advertise() will include no self-announcement
|
|
SelfAddress NodeAddress
|
|
|
|
// persistentPeers provides fast PersistentPeers lookups. It is built
|
|
// by optimize().
|
|
persistentPeers map[types.NodeID]bool
|
|
}
|
|
|
|
// Validate validates the options.
|
|
func (o *PeerManagerOptions) Validate() error {
|
|
for _, id := range o.PersistentPeers {
|
|
if err := id.Validate(); err != nil {
|
|
return fmt.Errorf("invalid PersistentPeer ID %q: %w", id, err)
|
|
}
|
|
}
|
|
|
|
for id := range o.PrivatePeers {
|
|
if err := id.Validate(); err != nil {
|
|
return fmt.Errorf("invalid private peer ID %q: %w", id, err)
|
|
}
|
|
}
|
|
|
|
if o.MaxConnected > 0 && len(o.PersistentPeers) > int(o.MaxConnected) {
|
|
return fmt.Errorf("number of persistent peers %v can't exceed MaxConnected %v",
|
|
len(o.PersistentPeers), o.MaxConnected)
|
|
}
|
|
|
|
if o.MaxPeers > 0 {
|
|
if o.MaxConnected == 0 || o.MaxConnected+o.MaxConnectedUpgrade > o.MaxPeers {
|
|
return fmt.Errorf("MaxConnected %v and MaxConnectedUpgrade %v can't exceed MaxPeers %v",
|
|
o.MaxConnected, o.MaxConnectedUpgrade, o.MaxPeers)
|
|
}
|
|
}
|
|
|
|
if o.MaxRetryTime > 0 {
|
|
if o.MinRetryTime == 0 {
|
|
return errors.New("can't set MaxRetryTime without MinRetryTime")
|
|
}
|
|
if o.MinRetryTime > o.MaxRetryTime {
|
|
return fmt.Errorf("MinRetryTime %v is greater than MaxRetryTime %v",
|
|
o.MinRetryTime, o.MaxRetryTime)
|
|
}
|
|
}
|
|
|
|
if o.MaxRetryTimePersistent > 0 {
|
|
if o.MinRetryTime == 0 {
|
|
return errors.New("can't set MaxRetryTimePersistent without MinRetryTime")
|
|
}
|
|
if o.MinRetryTime > o.MaxRetryTimePersistent {
|
|
return fmt.Errorf("MinRetryTime %v is greater than MaxRetryTimePersistent %v",
|
|
o.MinRetryTime, o.MaxRetryTimePersistent)
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// isPersistentPeer checks if a peer is in PersistentPeers. It will panic
|
|
// if called before optimize().
|
|
func (o *PeerManagerOptions) isPersistent(id types.NodeID) bool {
|
|
if o.persistentPeers == nil {
|
|
panic("isPersistentPeer() called before optimize()")
|
|
}
|
|
return o.persistentPeers[id]
|
|
}
|
|
|
|
// optimize optimizes operations by pregenerating lookup structures. It's a
|
|
// separate method instead of memoizing during calls to avoid dealing with
|
|
// concurrency and mutex overhead.
|
|
func (o *PeerManagerOptions) optimize() {
|
|
o.persistentPeers = make(map[types.NodeID]bool, len(o.PersistentPeers))
|
|
for _, p := range o.PersistentPeers {
|
|
o.persistentPeers[p] = true
|
|
}
|
|
}
|
|
|
|
// PeerManager manages peer lifecycle information, using a peerStore for
|
|
// underlying storage. Its primary purpose is to determine which peer to connect
|
|
// to next (including retry timers), make sure a peer only has a single active
|
|
// connection (either inbound or outbound), and evict peers to make room for
|
|
// higher-scored peers. It does not manage actual connections (this is handled
|
|
// by the Router), only the peer lifecycle state.
|
|
//
|
|
// For an outbound connection, the flow is as follows:
|
|
// - DialNext: return a peer address to dial, mark peer as dialing.
|
|
// - DialFailed: report a dial failure, unmark as dialing.
|
|
// - Dialed: report a dial success, unmark as dialing and mark as connected
|
|
// (errors if already connected, e.g. by Accepted).
|
|
// - Ready: report routing is ready, mark as ready and broadcast PeerStatusUp.
|
|
// - Disconnected: report peer disconnect, unmark as connected and broadcasts
|
|
// PeerStatusDown.
|
|
//
|
|
// For an inbound connection, the flow is as follows:
|
|
// - Accepted: report inbound connection success, mark as connected (errors if
|
|
// already connected, e.g. by Dialed).
|
|
// - Ready: report routing is ready, mark as ready and broadcast PeerStatusUp.
|
|
// - Disconnected: report peer disconnect, unmark as connected and broadcasts
|
|
// PeerStatusDown.
|
|
//
|
|
// When evicting peers, either because peers are explicitly scheduled for
|
|
// eviction or we are connected to too many peers, the flow is as follows:
|
|
// - EvictNext: if marked evict and connected, unmark evict and mark evicting.
|
|
// If beyond MaxConnected, pick lowest-scored peer and mark evicting.
|
|
// - Disconnected: unmark connected, evicting, evict, and broadcast a
|
|
// PeerStatusDown peer update.
|
|
//
|
|
// If all connection slots are full (at MaxConnections), we can use up to
|
|
// MaxConnectionsUpgrade additional connections to probe any higher-scored
|
|
// unconnected peers, and if we reach them (or they reach us) we allow the
|
|
// connection and evict a lower-scored peer. We mark the lower-scored peer as
|
|
// upgrading[from]=to to make sure no other higher-scored peers can claim the
|
|
// same one for an upgrade. The flow is as follows:
|
|
// - Accepted: if upgrade is possible, mark connected and add lower-scored to evict.
|
|
// - DialNext: if upgrade is possible, mark upgrading[from]=to and dialing.
|
|
// - DialFailed: unmark upgrading[from]=to and dialing.
|
|
// - Dialed: unmark upgrading[from]=to and dialing, mark as connected, add
|
|
// lower-scored to evict.
|
|
// - EvictNext: pick peer from evict, mark as evicting.
|
|
// - Disconnected: unmark connected, upgrading[from]=to, evict, evicting.
|
|
type PeerManager struct {
|
|
selfID types.NodeID
|
|
options PeerManagerOptions
|
|
rand *rand.Rand
|
|
dialWaker *tmsync.Waker // wakes up DialNext() on relevant peer changes
|
|
evictWaker *tmsync.Waker // wakes up EvictNext() on relevant peer changes
|
|
|
|
mtx sync.Mutex
|
|
store *peerStore
|
|
subscriptions map[*PeerUpdates]*PeerUpdates // keyed by struct identity (address)
|
|
dialing map[types.NodeID]bool // peers being dialed (DialNext → Dialed/DialFail)
|
|
upgrading map[types.NodeID]types.NodeID // peers claimed for upgrade (DialNext → Dialed/DialFail)
|
|
connected map[types.NodeID]bool // connected peers (Dialed/Accepted → Disconnected)
|
|
ready map[types.NodeID]bool // ready peers (Ready → Disconnected)
|
|
evict map[types.NodeID]bool // peers scheduled for eviction (Connected → EvictNext)
|
|
evicting map[types.NodeID]bool // peers being evicted (EvictNext → Disconnected)
|
|
}
|
|
|
|
// NewPeerManager creates a new peer manager.
|
|
func NewPeerManager(selfID types.NodeID, peerDB dbm.DB, options PeerManagerOptions) (*PeerManager, error) {
|
|
if selfID == "" {
|
|
return nil, errors.New("self ID not given")
|
|
}
|
|
if err := options.Validate(); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
options.optimize()
|
|
|
|
store, err := newPeerStore(peerDB)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
peerManager := &PeerManager{
|
|
selfID: selfID,
|
|
options: options,
|
|
rand: rand.New(rand.NewSource(time.Now().UnixNano())), // nolint:gosec
|
|
dialWaker: tmsync.NewWaker(),
|
|
evictWaker: tmsync.NewWaker(),
|
|
|
|
store: store,
|
|
dialing: map[types.NodeID]bool{},
|
|
upgrading: map[types.NodeID]types.NodeID{},
|
|
connected: map[types.NodeID]bool{},
|
|
ready: map[types.NodeID]bool{},
|
|
evict: map[types.NodeID]bool{},
|
|
evicting: map[types.NodeID]bool{},
|
|
subscriptions: map[*PeerUpdates]*PeerUpdates{},
|
|
}
|
|
if err = peerManager.configurePeers(); err != nil {
|
|
return nil, err
|
|
}
|
|
if err = peerManager.prunePeers(); err != nil {
|
|
return nil, err
|
|
}
|
|
return peerManager, nil
|
|
}
|
|
|
|
// configurePeers configures peers in the peer store with ephemeral runtime
|
|
// configuration, e.g. PersistentPeers. It also removes ourself, if we're in the
|
|
// peer store. The caller must hold the mutex lock.
|
|
func (m *PeerManager) configurePeers() error {
|
|
if err := m.store.Delete(m.selfID); err != nil {
|
|
return err
|
|
}
|
|
|
|
configure := map[types.NodeID]bool{}
|
|
for _, id := range m.options.PersistentPeers {
|
|
configure[id] = true
|
|
}
|
|
for id := range m.options.PeerScores {
|
|
configure[id] = true
|
|
}
|
|
for id := range configure {
|
|
if peer, ok := m.store.Get(id); ok {
|
|
if err := m.store.Set(m.configurePeer(peer)); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// configurePeer configures a peer with ephemeral runtime configuration.
|
|
func (m *PeerManager) configurePeer(peer peerInfo) peerInfo {
|
|
peer.Persistent = m.options.isPersistent(peer.ID)
|
|
peer.FixedScore = m.options.PeerScores[peer.ID]
|
|
return peer
|
|
}
|
|
|
|
// newPeerInfo creates a peerInfo for a new peer.
|
|
func (m *PeerManager) newPeerInfo(id types.NodeID) peerInfo {
|
|
peerInfo := peerInfo{
|
|
ID: id,
|
|
AddressInfo: map[NodeAddress]*peerAddressInfo{},
|
|
}
|
|
return m.configurePeer(peerInfo)
|
|
}
|
|
|
|
// prunePeers removes low-scored peers from the peer store if it contains more
|
|
// than MaxPeers peers. The caller must hold the mutex lock.
|
|
func (m *PeerManager) prunePeers() error {
|
|
if m.options.MaxPeers == 0 || m.store.Size() <= int(m.options.MaxPeers) {
|
|
return nil
|
|
}
|
|
|
|
ranked := m.store.Ranked()
|
|
for i := len(ranked) - 1; i >= 0; i-- {
|
|
peerID := ranked[i].ID
|
|
switch {
|
|
case m.store.Size() <= int(m.options.MaxPeers):
|
|
return nil
|
|
case m.dialing[peerID]:
|
|
case m.connected[peerID]:
|
|
default:
|
|
if err := m.store.Delete(peerID); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Add adds a peer to the manager, given as an address. If the peer already
|
|
// exists, the address is added to it if it isn't already present. This will push
|
|
// low scoring peers out of the address book if it exceeds the maximum size.
|
|
func (m *PeerManager) Add(address NodeAddress) (bool, error) {
|
|
if err := address.Validate(); err != nil {
|
|
return false, err
|
|
}
|
|
if address.NodeID == m.selfID {
|
|
return false, fmt.Errorf("can't add self (%v) to peer store", m.selfID)
|
|
}
|
|
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
peer, ok := m.store.Get(address.NodeID)
|
|
if !ok {
|
|
peer = m.newPeerInfo(address.NodeID)
|
|
}
|
|
_, ok = peer.AddressInfo[address]
|
|
// if we already have the peer address, there's no need to continue
|
|
if ok {
|
|
return false, nil
|
|
}
|
|
|
|
// else add the new address
|
|
peer.AddressInfo[address] = &peerAddressInfo{Address: address}
|
|
if err := m.store.Set(peer); err != nil {
|
|
return false, err
|
|
}
|
|
if err := m.prunePeers(); err != nil {
|
|
return true, err
|
|
}
|
|
m.dialWaker.Wake()
|
|
return true, nil
|
|
}
|
|
|
|
// PeerRatio returns the ratio of peer addresses stored to the maximum size.
|
|
func (m *PeerManager) PeerRatio() float64 {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
if m.options.MaxPeers == 0 {
|
|
return 0
|
|
}
|
|
|
|
return float64(m.store.Size()) / float64(m.options.MaxPeers)
|
|
}
|
|
|
|
// DialNext finds an appropriate peer address to dial, and marks it as dialing.
|
|
// If no peer is found, or all connection slots are full, it blocks until one
|
|
// becomes available. The caller must call Dialed() or DialFailed() for the
|
|
// returned peer.
|
|
func (m *PeerManager) DialNext(ctx context.Context) (NodeAddress, error) {
|
|
for {
|
|
address, err := m.TryDialNext()
|
|
if err != nil || (address != NodeAddress{}) {
|
|
return address, err
|
|
}
|
|
select {
|
|
case <-m.dialWaker.Sleep():
|
|
case <-ctx.Done():
|
|
return NodeAddress{}, ctx.Err()
|
|
}
|
|
}
|
|
}
|
|
|
|
// TryDialNext is equivalent to DialNext(), but immediately returns an empty
|
|
// address if no peers or connection slots are available.
|
|
func (m *PeerManager) TryDialNext() (NodeAddress, error) {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
// We allow dialing MaxConnected+MaxConnectedUpgrade peers. Including
|
|
// MaxConnectedUpgrade allows us to probe additional peers that have a
|
|
// higher score than any other peers, and if successful evict it.
|
|
if m.options.MaxConnected > 0 && len(m.connected)+len(m.dialing) >=
|
|
int(m.options.MaxConnected)+int(m.options.MaxConnectedUpgrade) {
|
|
return NodeAddress{}, nil
|
|
}
|
|
|
|
for _, peer := range m.store.Ranked() {
|
|
if m.dialing[peer.ID] || m.connected[peer.ID] {
|
|
continue
|
|
}
|
|
|
|
for _, addressInfo := range peer.AddressInfo {
|
|
if time.Since(addressInfo.LastDialFailure) < m.retryDelay(addressInfo.DialFailures, peer.Persistent) {
|
|
continue
|
|
}
|
|
|
|
// We now have an eligible address to dial. If we're full but have
|
|
// upgrade capacity (as checked above), we find a lower-scored peer
|
|
// we can replace and mark it as upgrading so noone else claims it.
|
|
//
|
|
// If we don't find one, there is no point in trying additional
|
|
// peers, since they will all have the same or lower score than this
|
|
// peer (since they're ordered by score via peerStore.Ranked).
|
|
if m.options.MaxConnected > 0 && len(m.connected) >= int(m.options.MaxConnected) {
|
|
upgradeFromPeer := m.findUpgradeCandidate(peer.ID, peer.Score())
|
|
if upgradeFromPeer == "" {
|
|
return NodeAddress{}, nil
|
|
}
|
|
m.upgrading[upgradeFromPeer] = peer.ID
|
|
}
|
|
|
|
m.dialing[peer.ID] = true
|
|
return addressInfo.Address, nil
|
|
}
|
|
}
|
|
return NodeAddress{}, nil
|
|
}
|
|
|
|
// DialFailed reports a failed dial attempt. This will make the peer available
|
|
// for dialing again when appropriate (possibly after a retry timeout).
|
|
//
|
|
// FIXME: This should probably delete or mark bad addresses/peers after some time.
|
|
func (m *PeerManager) DialFailed(ctx context.Context, address NodeAddress) error {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
delete(m.dialing, address.NodeID)
|
|
for from, to := range m.upgrading {
|
|
if to == address.NodeID {
|
|
delete(m.upgrading, from) // Unmark failed upgrade attempt.
|
|
}
|
|
}
|
|
|
|
peer, ok := m.store.Get(address.NodeID)
|
|
if !ok { // Peer may have been removed while dialing, ignore.
|
|
return nil
|
|
}
|
|
addressInfo, ok := peer.AddressInfo[address]
|
|
if !ok {
|
|
return nil // Assume the address has been removed, ignore.
|
|
}
|
|
|
|
addressInfo.LastDialFailure = time.Now().UTC()
|
|
addressInfo.DialFailures++
|
|
if err := m.store.Set(peer); err != nil {
|
|
return err
|
|
}
|
|
|
|
// We spawn a goroutine that notifies DialNext() again when the retry
|
|
// timeout has elapsed, so that we can consider dialing it again. We
|
|
// calculate the retry delay outside the goroutine, since it must hold
|
|
// the mutex lock.
|
|
if d := m.retryDelay(addressInfo.DialFailures, peer.Persistent); d != 0 && d != retryNever {
|
|
go func() {
|
|
// Use an explicit timer with deferred cleanup instead of
|
|
// time.After(), to avoid leaking goroutines on PeerManager.Close().
|
|
timer := time.NewTimer(d)
|
|
defer timer.Stop()
|
|
select {
|
|
case <-timer.C:
|
|
m.dialWaker.Wake()
|
|
case <-ctx.Done():
|
|
}
|
|
}()
|
|
} else {
|
|
m.dialWaker.Wake()
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// Dialed marks a peer as successfully dialed. Any further connections will be
|
|
// rejected, and once disconnected the peer may be dialed again.
|
|
func (m *PeerManager) Dialed(address NodeAddress) error {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
delete(m.dialing, address.NodeID)
|
|
|
|
var upgradeFromPeer types.NodeID
|
|
for from, to := range m.upgrading {
|
|
if to == address.NodeID {
|
|
delete(m.upgrading, from)
|
|
upgradeFromPeer = from
|
|
// Don't break, just in case this peer was marked as upgrading for
|
|
// multiple lower-scored peers (shouldn't really happen).
|
|
}
|
|
}
|
|
if address.NodeID == m.selfID {
|
|
return fmt.Errorf("rejecting connection to self (%v)", address.NodeID)
|
|
}
|
|
if m.connected[address.NodeID] {
|
|
return fmt.Errorf("peer %v is already connected", address.NodeID)
|
|
}
|
|
if m.options.MaxConnected > 0 && len(m.connected) >= int(m.options.MaxConnected) {
|
|
if upgradeFromPeer == "" || len(m.connected) >=
|
|
int(m.options.MaxConnected)+int(m.options.MaxConnectedUpgrade) {
|
|
return fmt.Errorf("already connected to maximum number of peers")
|
|
}
|
|
}
|
|
|
|
peer, ok := m.store.Get(address.NodeID)
|
|
if !ok {
|
|
return fmt.Errorf("peer %q was removed while dialing", address.NodeID)
|
|
}
|
|
now := time.Now().UTC()
|
|
peer.LastConnected = now
|
|
if addressInfo, ok := peer.AddressInfo[address]; ok {
|
|
addressInfo.DialFailures = 0
|
|
addressInfo.LastDialSuccess = now
|
|
// If not found, assume address has been removed.
|
|
}
|
|
|
|
if err := m.store.Set(peer); err != nil {
|
|
return err
|
|
}
|
|
|
|
if upgradeFromPeer != "" && m.options.MaxConnected > 0 &&
|
|
len(m.connected) >= int(m.options.MaxConnected) {
|
|
// Look for an even lower-scored peer that may have appeared since we
|
|
// started the upgrade.
|
|
if p, ok := m.store.Get(upgradeFromPeer); ok {
|
|
if u := m.findUpgradeCandidate(p.ID, p.Score()); u != "" {
|
|
upgradeFromPeer = u
|
|
}
|
|
}
|
|
m.evict[upgradeFromPeer] = true
|
|
}
|
|
m.connected[peer.ID] = true
|
|
m.evictWaker.Wake()
|
|
|
|
return nil
|
|
}
|
|
|
|
// Accepted marks an incoming peer connection successfully accepted. If the peer
|
|
// is already connected or we don't allow additional connections then this will
|
|
// return an error.
|
|
//
|
|
// If full but MaxConnectedUpgrade is non-zero and the incoming peer is
|
|
// better-scored than any existing peers, then we accept it and evict a
|
|
// lower-scored peer.
|
|
//
|
|
// NOTE: We can't take an address here, since e.g. TCP uses a different port
|
|
// number for outbound traffic than inbound traffic, so the peer's endpoint
|
|
// wouldn't necessarily be an appropriate address to dial.
|
|
//
|
|
// FIXME: When we accept a connection from a peer, we should register that
|
|
// peer's address in the peer store so that we can dial it later. In order to do
|
|
// that, we'll need to get the remote address after all, but as noted above that
|
|
// can't be the remote endpoint since that will usually have the wrong port
|
|
// number.
|
|
func (m *PeerManager) Accepted(peerID types.NodeID) error {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
if peerID == m.selfID {
|
|
return fmt.Errorf("rejecting connection from self (%v)", peerID)
|
|
}
|
|
if m.connected[peerID] {
|
|
return fmt.Errorf("peer %q is already connected", peerID)
|
|
}
|
|
if m.options.MaxConnected > 0 &&
|
|
len(m.connected) >= int(m.options.MaxConnected)+int(m.options.MaxConnectedUpgrade) {
|
|
return fmt.Errorf("already connected to maximum number of peers")
|
|
}
|
|
|
|
peer, ok := m.store.Get(peerID)
|
|
if !ok {
|
|
peer = m.newPeerInfo(peerID)
|
|
}
|
|
|
|
// reset this to avoid penalizing peers for their past transgressions
|
|
for _, addr := range peer.AddressInfo {
|
|
addr.DialFailures = 0
|
|
}
|
|
|
|
// If all connections slots are full, but we allow upgrades (and we checked
|
|
// above that we have upgrade capacity), then we can look for a lower-scored
|
|
// peer to replace and if found accept the connection anyway and evict it.
|
|
var upgradeFromPeer types.NodeID
|
|
if m.options.MaxConnected > 0 && len(m.connected) >= int(m.options.MaxConnected) {
|
|
upgradeFromPeer = m.findUpgradeCandidate(peer.ID, peer.Score())
|
|
if upgradeFromPeer == "" {
|
|
return fmt.Errorf("already connected to maximum number of peers")
|
|
}
|
|
}
|
|
|
|
peer.LastConnected = time.Now().UTC()
|
|
if err := m.store.Set(peer); err != nil {
|
|
return err
|
|
}
|
|
|
|
m.connected[peerID] = true
|
|
if upgradeFromPeer != "" {
|
|
m.evict[upgradeFromPeer] = true
|
|
}
|
|
m.evictWaker.Wake()
|
|
return nil
|
|
}
|
|
|
|
// Ready marks a peer as ready, broadcasting status updates to subscribers. The
|
|
// peer must already be marked as connected. This is separate from Dialed() and
|
|
// Accepted() to allow the router to set up its internal queues before reactors
|
|
// start sending messages.
|
|
func (m *PeerManager) Ready(ctx context.Context, peerID types.NodeID) {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
if m.connected[peerID] {
|
|
m.ready[peerID] = true
|
|
m.broadcast(ctx, PeerUpdate{
|
|
NodeID: peerID,
|
|
Status: PeerStatusUp,
|
|
})
|
|
}
|
|
}
|
|
|
|
// EvictNext returns the next peer to evict (i.e. disconnect). If no evictable
|
|
// peers are found, the call will block until one becomes available.
|
|
func (m *PeerManager) EvictNext(ctx context.Context) (types.NodeID, error) {
|
|
for {
|
|
id, err := m.TryEvictNext()
|
|
if err != nil || id != "" {
|
|
return id, err
|
|
}
|
|
select {
|
|
case <-m.evictWaker.Sleep():
|
|
case <-ctx.Done():
|
|
return "", ctx.Err()
|
|
}
|
|
}
|
|
}
|
|
|
|
// TryEvictNext is equivalent to EvictNext, but immediately returns an empty
|
|
// node ID if no evictable peers are found.
|
|
func (m *PeerManager) TryEvictNext() (types.NodeID, error) {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
// If any connected peers are explicitly scheduled for eviction, we return a
|
|
// random one.
|
|
for peerID := range m.evict {
|
|
delete(m.evict, peerID)
|
|
if m.connected[peerID] && !m.evicting[peerID] {
|
|
m.evicting[peerID] = true
|
|
return peerID, nil
|
|
}
|
|
}
|
|
|
|
// If we're below capacity, we don't need to evict anything.
|
|
if m.options.MaxConnected == 0 ||
|
|
len(m.connected)-len(m.evicting) <= int(m.options.MaxConnected) {
|
|
return "", nil
|
|
}
|
|
|
|
// If we're above capacity (shouldn't really happen), just pick the
|
|
// lowest-ranked peer to evict.
|
|
ranked := m.store.Ranked()
|
|
for i := len(ranked) - 1; i >= 0; i-- {
|
|
peer := ranked[i]
|
|
if m.connected[peer.ID] && !m.evicting[peer.ID] {
|
|
m.evicting[peer.ID] = true
|
|
return peer.ID, nil
|
|
}
|
|
}
|
|
|
|
return "", nil
|
|
}
|
|
|
|
// Disconnected unmarks a peer as connected, allowing it to be dialed or
|
|
// accepted again as appropriate.
|
|
func (m *PeerManager) Disconnected(ctx context.Context, peerID types.NodeID) {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
ready := m.ready[peerID]
|
|
|
|
delete(m.connected, peerID)
|
|
delete(m.upgrading, peerID)
|
|
delete(m.evict, peerID)
|
|
delete(m.evicting, peerID)
|
|
delete(m.ready, peerID)
|
|
|
|
if ready {
|
|
m.broadcast(ctx, PeerUpdate{
|
|
NodeID: peerID,
|
|
Status: PeerStatusDown,
|
|
})
|
|
}
|
|
|
|
m.dialWaker.Wake()
|
|
}
|
|
|
|
// Errored reports a peer error, causing the peer to be evicted if it's
|
|
// currently connected.
|
|
//
|
|
// FIXME: This should probably be replaced with a peer behavior API, see
|
|
// PeerError comments for more details.
|
|
//
|
|
// FIXME: This will cause the peer manager to immediately try to reconnect to
|
|
// the peer, which is probably not always what we want.
|
|
func (m *PeerManager) Errored(peerID types.NodeID, err error) {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
if m.connected[peerID] {
|
|
m.evict[peerID] = true
|
|
}
|
|
|
|
m.evictWaker.Wake()
|
|
}
|
|
|
|
// Advertise returns a list of peer addresses to advertise to a peer.
|
|
//
|
|
// FIXME: This is fairly naïve and only returns the addresses of the
|
|
// highest-ranked peers.
|
|
func (m *PeerManager) Advertise(peerID types.NodeID, limit uint16) []NodeAddress {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
addresses := make([]NodeAddress, 0, limit)
|
|
|
|
// advertise ourselves, to let everyone know how to dial us back
|
|
// and enable mutual address discovery
|
|
if m.options.SelfAddress.Hostname != "" && m.options.SelfAddress.Port != 0 {
|
|
addresses = append(addresses, m.options.SelfAddress)
|
|
}
|
|
|
|
for _, peer := range m.store.Ranked() {
|
|
if peer.ID == peerID {
|
|
continue
|
|
}
|
|
|
|
for nodeAddr, addressInfo := range peer.AddressInfo {
|
|
if len(addresses) >= int(limit) {
|
|
return addresses
|
|
}
|
|
|
|
// only add non-private NodeIDs
|
|
if _, ok := m.options.PrivatePeers[nodeAddr.NodeID]; !ok {
|
|
addresses = append(addresses, addressInfo.Address)
|
|
}
|
|
}
|
|
}
|
|
|
|
return addresses
|
|
}
|
|
|
|
// Subscribe subscribes to peer updates. The caller must consume the peer
|
|
// updates in a timely fashion and close the subscription when done, otherwise
|
|
// the PeerManager will halt.
|
|
func (m *PeerManager) Subscribe(ctx context.Context) *PeerUpdates {
|
|
// FIXME: We use a size 1 buffer here. When we broadcast a peer update
|
|
// we have to loop over all of the subscriptions, and we want to avoid
|
|
// having to block and wait for a context switch before continuing on
|
|
// to the next subscriptions. This also prevents tail latencies from
|
|
// compounding. Limiting it to 1 means that the subscribers are still
|
|
// reasonably in sync. However, this should probably be benchmarked.
|
|
peerUpdates := NewPeerUpdates(make(chan PeerUpdate, 1), 1)
|
|
m.Register(ctx, peerUpdates)
|
|
return peerUpdates
|
|
}
|
|
|
|
// Register allows you to inject a custom PeerUpdate instance into the
|
|
// PeerManager, rather than relying on the instance constructed by the
|
|
// Subscribe method, which wraps the functionality of the Register
|
|
// method.
|
|
//
|
|
// The caller must consume the peer updates from this PeerUpdates
|
|
// instance in a timely fashion and close the subscription when done,
|
|
// otherwise the PeerManager will halt.
|
|
func (m *PeerManager) Register(ctx context.Context, peerUpdates *PeerUpdates) {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
m.subscriptions[peerUpdates] = peerUpdates
|
|
|
|
go func() {
|
|
for {
|
|
select {
|
|
case <-ctx.Done():
|
|
return
|
|
case pu := <-peerUpdates.routerUpdatesCh:
|
|
m.processPeerEvent(ctx, pu)
|
|
}
|
|
}
|
|
}()
|
|
|
|
go func() {
|
|
<-ctx.Done()
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
delete(m.subscriptions, peerUpdates)
|
|
}()
|
|
}
|
|
|
|
func (m *PeerManager) processPeerEvent(ctx context.Context, pu PeerUpdate) {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
if ctx.Err() != nil {
|
|
return
|
|
}
|
|
|
|
if _, ok := m.store.peers[pu.NodeID]; !ok {
|
|
m.store.peers[pu.NodeID] = &peerInfo{}
|
|
}
|
|
|
|
switch pu.Status {
|
|
case PeerStatusBad:
|
|
m.store.peers[pu.NodeID].MutableScore--
|
|
case PeerStatusGood:
|
|
m.store.peers[pu.NodeID].MutableScore++
|
|
}
|
|
}
|
|
|
|
// broadcast broadcasts a peer update to all subscriptions. The caller must
|
|
// already hold the mutex lock, to make sure updates are sent in the same order
|
|
// as the PeerManager processes them, but this means subscribers must be
|
|
// responsive at all times or the entire PeerManager will halt.
|
|
//
|
|
// FIXME: Consider using an internal channel to buffer updates while also
|
|
// maintaining order if this is a problem.
|
|
func (m *PeerManager) broadcast(ctx context.Context, peerUpdate PeerUpdate) {
|
|
for _, sub := range m.subscriptions {
|
|
if ctx.Err() != nil {
|
|
return
|
|
}
|
|
select {
|
|
case <-ctx.Done():
|
|
return
|
|
case sub.reactorUpdatesCh <- peerUpdate:
|
|
}
|
|
}
|
|
}
|
|
|
|
// Addresses returns all known addresses for a peer, primarily for testing.
|
|
// The order is arbitrary.
|
|
func (m *PeerManager) Addresses(peerID types.NodeID) []NodeAddress {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
addresses := []NodeAddress{}
|
|
if peer, ok := m.store.Get(peerID); ok {
|
|
for _, addressInfo := range peer.AddressInfo {
|
|
addresses = append(addresses, addressInfo.Address)
|
|
}
|
|
}
|
|
return addresses
|
|
}
|
|
|
|
// Peers returns all known peers, primarily for testing. The order is arbitrary.
|
|
func (m *PeerManager) Peers() []types.NodeID {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
peers := []types.NodeID{}
|
|
for _, peer := range m.store.Ranked() {
|
|
peers = append(peers, peer.ID)
|
|
}
|
|
return peers
|
|
}
|
|
|
|
// Scores returns the peer scores for all known peers, primarily for testing.
|
|
func (m *PeerManager) Scores() map[types.NodeID]PeerScore {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
scores := map[types.NodeID]PeerScore{}
|
|
for _, peer := range m.store.Ranked() {
|
|
scores[peer.ID] = peer.Score()
|
|
}
|
|
return scores
|
|
}
|
|
|
|
// Status returns the status for a peer, primarily for testing.
|
|
func (m *PeerManager) Status(id types.NodeID) PeerStatus {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
switch {
|
|
case m.ready[id]:
|
|
return PeerStatusUp
|
|
default:
|
|
return PeerStatusDown
|
|
}
|
|
}
|
|
|
|
// findUpgradeCandidate looks for a lower-scored peer that we could evict
|
|
// to make room for the given peer. Returns an empty ID if none is found.
|
|
// If the peer is already being upgraded to, we return that same upgrade.
|
|
// The caller must hold the mutex lock.
|
|
func (m *PeerManager) findUpgradeCandidate(id types.NodeID, score PeerScore) types.NodeID {
|
|
for from, to := range m.upgrading {
|
|
if to == id {
|
|
return from
|
|
}
|
|
}
|
|
|
|
ranked := m.store.Ranked()
|
|
for i := len(ranked) - 1; i >= 0; i-- {
|
|
candidate := ranked[i]
|
|
switch {
|
|
case candidate.Score() >= score:
|
|
return "" // no further peers can be scored lower, due to sorting
|
|
case !m.connected[candidate.ID]:
|
|
case m.evict[candidate.ID]:
|
|
case m.evicting[candidate.ID]:
|
|
case m.upgrading[candidate.ID] != "":
|
|
default:
|
|
return candidate.ID
|
|
}
|
|
}
|
|
return ""
|
|
}
|
|
|
|
// retryDelay calculates a dial retry delay using exponential backoff, based on
|
|
// retry settings in PeerManagerOptions. If retries are disabled (i.e.
|
|
// MinRetryTime is 0), this returns retryNever (i.e. an infinite retry delay).
|
|
// The caller must hold the mutex lock (for m.rand which is not thread-safe).
|
|
func (m *PeerManager) retryDelay(failures uint32, persistent bool) time.Duration {
|
|
if failures == 0 {
|
|
return 0
|
|
}
|
|
if m.options.MinRetryTime == 0 {
|
|
return retryNever
|
|
}
|
|
maxDelay := m.options.MaxRetryTime
|
|
if persistent && m.options.MaxRetryTimePersistent > 0 {
|
|
maxDelay = m.options.MaxRetryTimePersistent
|
|
}
|
|
|
|
delay := m.options.MinRetryTime * time.Duration(math.Pow(2, float64(failures-1)))
|
|
if maxDelay > 0 && delay > maxDelay {
|
|
delay = maxDelay
|
|
}
|
|
if m.options.RetryTimeJitter > 0 {
|
|
delay += time.Duration(m.rand.Int63n(int64(m.options.RetryTimeJitter)))
|
|
}
|
|
return delay
|
|
}
|
|
|
|
// GetHeight returns a peer's height, as reported via SetHeight, or 0 if the
|
|
// peer or height is unknown.
|
|
//
|
|
// FIXME: This is a temporary workaround to share state between the consensus
|
|
// and mempool reactors, carried over from the legacy P2P stack. Reactors should
|
|
// not have dependencies on each other, instead tracking this themselves.
|
|
func (m *PeerManager) GetHeight(peerID types.NodeID) int64 {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
peer, _ := m.store.Get(peerID)
|
|
return peer.Height
|
|
}
|
|
|
|
// SetHeight stores a peer's height, making it available via GetHeight.
|
|
//
|
|
// FIXME: This is a temporary workaround to share state between the consensus
|
|
// and mempool reactors, carried over from the legacy P2P stack. Reactors should
|
|
// not have dependencies on each other, instead tracking this themselves.
|
|
func (m *PeerManager) SetHeight(peerID types.NodeID, height int64) error {
|
|
m.mtx.Lock()
|
|
defer m.mtx.Unlock()
|
|
|
|
peer, ok := m.store.Get(peerID)
|
|
if !ok {
|
|
peer = m.newPeerInfo(peerID)
|
|
}
|
|
peer.Height = height
|
|
return m.store.Set(peer)
|
|
}
|
|
|
|
// peerStore stores information about peers. It is not thread-safe, assuming it
|
|
// is only used by PeerManager which handles concurrency control. This allows
|
|
// the manager to execute multiple operations atomically via its own mutex.
|
|
//
|
|
// The entire set of peers is kept in memory, for performance. It is loaded
|
|
// from disk on initialization, and any changes are written back to disk
|
|
// (without fsync, since we can afford to lose recent writes).
|
|
type peerStore struct {
|
|
db dbm.DB
|
|
peers map[types.NodeID]*peerInfo
|
|
ranked []*peerInfo // cache for Ranked(), nil invalidates cache
|
|
}
|
|
|
|
// newPeerStore creates a new peer store, loading all persisted peers from the
|
|
// database into memory.
|
|
func newPeerStore(db dbm.DB) (*peerStore, error) {
|
|
if db == nil {
|
|
return nil, errors.New("no database provided")
|
|
}
|
|
store := &peerStore{db: db}
|
|
if err := store.loadPeers(); err != nil {
|
|
return nil, err
|
|
}
|
|
return store, nil
|
|
}
|
|
|
|
// loadPeers loads all peers from the database into memory.
|
|
func (s *peerStore) loadPeers() error {
|
|
peers := map[types.NodeID]*peerInfo{}
|
|
|
|
start, end := keyPeerInfoRange()
|
|
iter, err := s.db.Iterator(start, end)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
defer iter.Close()
|
|
for ; iter.Valid(); iter.Next() {
|
|
// FIXME: We may want to tolerate failures here, by simply logging
|
|
// the errors and ignoring the faulty peer entries.
|
|
msg := new(p2pproto.PeerInfo)
|
|
if err := proto.Unmarshal(iter.Value(), msg); err != nil {
|
|
return fmt.Errorf("invalid peer Protobuf data: %w", err)
|
|
}
|
|
peer, err := peerInfoFromProto(msg)
|
|
if err != nil {
|
|
return fmt.Errorf("invalid peer data: %w", err)
|
|
}
|
|
peers[peer.ID] = peer
|
|
}
|
|
if iter.Error() != nil {
|
|
return iter.Error()
|
|
}
|
|
s.peers = peers
|
|
s.ranked = nil // invalidate cache if populated
|
|
return nil
|
|
}
|
|
|
|
// Get fetches a peer. The boolean indicates whether the peer existed or not.
|
|
// The returned peer info is a copy, and can be mutated at will.
|
|
func (s *peerStore) Get(id types.NodeID) (peerInfo, bool) {
|
|
peer, ok := s.peers[id]
|
|
return peer.Copy(), ok
|
|
}
|
|
|
|
// Set stores peer data. The input data will be copied, and can safely be reused
|
|
// by the caller.
|
|
func (s *peerStore) Set(peer peerInfo) error {
|
|
if err := peer.Validate(); err != nil {
|
|
return err
|
|
}
|
|
peer = peer.Copy()
|
|
|
|
// FIXME: We may want to optimize this by avoiding saving to the database
|
|
// if there haven't been any changes to persisted fields.
|
|
bz, err := peer.ToProto().Marshal()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if err = s.db.Set(keyPeerInfo(peer.ID), bz); err != nil {
|
|
return err
|
|
}
|
|
|
|
if current, ok := s.peers[peer.ID]; !ok || current.Score() != peer.Score() {
|
|
// If the peer is new, or its score changes, we invalidate the Ranked() cache.
|
|
s.peers[peer.ID] = &peer
|
|
s.ranked = nil
|
|
} else {
|
|
// Otherwise, since s.ranked contains pointers to the old data and we
|
|
// want those pointers to remain valid with the new data, we have to
|
|
// update the existing pointer address.
|
|
*current = peer
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// Delete deletes a peer, or does nothing if it does not exist.
|
|
func (s *peerStore) Delete(id types.NodeID) error {
|
|
if _, ok := s.peers[id]; !ok {
|
|
return nil
|
|
}
|
|
if err := s.db.Delete(keyPeerInfo(id)); err != nil {
|
|
return err
|
|
}
|
|
delete(s.peers, id)
|
|
s.ranked = nil
|
|
return nil
|
|
}
|
|
|
|
// List retrieves all peers in an arbitrary order. The returned data is a copy,
|
|
// and can be mutated at will.
|
|
func (s *peerStore) List() []peerInfo {
|
|
peers := make([]peerInfo, 0, len(s.peers))
|
|
for _, peer := range s.peers {
|
|
peers = append(peers, peer.Copy())
|
|
}
|
|
return peers
|
|
}
|
|
|
|
// Ranked returns a list of peers ordered by score (better peers first). Peers
|
|
// with equal scores are returned in an arbitrary order. The returned list must
|
|
// not be mutated or accessed concurrently by the caller, since it returns
|
|
// pointers to internal peerStore data for performance.
|
|
//
|
|
// Ranked is used to determine both which peers to dial, which ones to evict,
|
|
// and which ones to delete completely.
|
|
//
|
|
// FIXME: For now, we simply maintain a cache in s.ranked which is invalidated
|
|
// by setting it to nil, but if necessary we should use a better data structure
|
|
// for this (e.g. a heap or ordered map).
|
|
//
|
|
// FIXME: The scoring logic is currently very naïve, see peerInfo.Score().
|
|
func (s *peerStore) Ranked() []*peerInfo {
|
|
if s.ranked != nil {
|
|
return s.ranked
|
|
}
|
|
s.ranked = make([]*peerInfo, 0, len(s.peers))
|
|
for _, peer := range s.peers {
|
|
s.ranked = append(s.ranked, peer)
|
|
}
|
|
sort.Slice(s.ranked, func(i, j int) bool {
|
|
// FIXME: If necessary, consider precomputing scores before sorting,
|
|
// to reduce the number of Score() calls.
|
|
return s.ranked[i].Score() > s.ranked[j].Score()
|
|
})
|
|
return s.ranked
|
|
}
|
|
|
|
// Size returns the number of peers in the peer store.
|
|
func (s *peerStore) Size() int {
|
|
return len(s.peers)
|
|
}
|
|
|
|
// peerInfo contains peer information stored in a peerStore.
|
|
type peerInfo struct {
|
|
ID types.NodeID
|
|
AddressInfo map[NodeAddress]*peerAddressInfo
|
|
LastConnected time.Time
|
|
|
|
// These fields are ephemeral, i.e. not persisted to the database.
|
|
Persistent bool
|
|
Height int64
|
|
FixedScore PeerScore // mainly for tests
|
|
|
|
MutableScore int64 // updated by router
|
|
}
|
|
|
|
// peerInfoFromProto converts a Protobuf PeerInfo message to a peerInfo,
|
|
// erroring if the data is invalid.
|
|
func peerInfoFromProto(msg *p2pproto.PeerInfo) (*peerInfo, error) {
|
|
p := &peerInfo{
|
|
ID: types.NodeID(msg.ID),
|
|
AddressInfo: map[NodeAddress]*peerAddressInfo{},
|
|
}
|
|
if msg.LastConnected != nil {
|
|
p.LastConnected = *msg.LastConnected
|
|
}
|
|
for _, a := range msg.AddressInfo {
|
|
addressInfo, err := peerAddressInfoFromProto(a)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
p.AddressInfo[addressInfo.Address] = addressInfo
|
|
}
|
|
return p, p.Validate()
|
|
}
|
|
|
|
// ToProto converts the peerInfo to p2pproto.PeerInfo for database storage. The
|
|
// Protobuf type only contains persisted fields, while ephemeral fields are
|
|
// discarded. The returned message may contain pointers to original data, since
|
|
// it is expected to be serialized immediately.
|
|
func (p *peerInfo) ToProto() *p2pproto.PeerInfo {
|
|
msg := &p2pproto.PeerInfo{
|
|
ID: string(p.ID),
|
|
LastConnected: &p.LastConnected,
|
|
}
|
|
for _, addressInfo := range p.AddressInfo {
|
|
msg.AddressInfo = append(msg.AddressInfo, addressInfo.ToProto())
|
|
}
|
|
if msg.LastConnected.IsZero() {
|
|
msg.LastConnected = nil
|
|
}
|
|
return msg
|
|
}
|
|
|
|
// Copy returns a deep copy of the peer info.
|
|
func (p *peerInfo) Copy() peerInfo {
|
|
if p == nil {
|
|
return peerInfo{}
|
|
}
|
|
c := *p
|
|
for i, addressInfo := range c.AddressInfo {
|
|
addressInfoCopy := addressInfo.Copy()
|
|
c.AddressInfo[i] = &addressInfoCopy
|
|
}
|
|
return c
|
|
}
|
|
|
|
// Score calculates a score for the peer. Higher-scored peers will be
|
|
// preferred over lower scores.
|
|
func (p *peerInfo) Score() PeerScore {
|
|
if p.FixedScore > 0 {
|
|
return p.FixedScore
|
|
}
|
|
if p.Persistent {
|
|
return PeerScorePersistent
|
|
}
|
|
|
|
score := p.MutableScore
|
|
|
|
for _, addr := range p.AddressInfo {
|
|
// DialFailures is reset when dials succeed, so this
|
|
// is either the number of dial failures or 0.
|
|
score -= int64(addr.DialFailures)
|
|
}
|
|
|
|
if score <= 0 {
|
|
return 0
|
|
}
|
|
|
|
if score >= math.MaxUint8 {
|
|
return PeerScore(math.MaxUint8)
|
|
}
|
|
|
|
return PeerScore(score)
|
|
}
|
|
|
|
// Validate validates the peer info.
|
|
func (p *peerInfo) Validate() error {
|
|
if p.ID == "" {
|
|
return errors.New("no peer ID")
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// peerAddressInfo contains information and statistics about a peer address.
|
|
type peerAddressInfo struct {
|
|
Address NodeAddress
|
|
LastDialSuccess time.Time
|
|
LastDialFailure time.Time
|
|
DialFailures uint32 // since last successful dial
|
|
}
|
|
|
|
// peerAddressInfoFromProto converts a Protobuf PeerAddressInfo message
|
|
// to a peerAddressInfo.
|
|
func peerAddressInfoFromProto(msg *p2pproto.PeerAddressInfo) (*peerAddressInfo, error) {
|
|
address, err := ParseNodeAddress(msg.Address)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("invalid address %q: %w", address, err)
|
|
}
|
|
addressInfo := &peerAddressInfo{
|
|
Address: address,
|
|
DialFailures: msg.DialFailures,
|
|
}
|
|
if msg.LastDialSuccess != nil {
|
|
addressInfo.LastDialSuccess = *msg.LastDialSuccess
|
|
}
|
|
if msg.LastDialFailure != nil {
|
|
addressInfo.LastDialFailure = *msg.LastDialFailure
|
|
}
|
|
return addressInfo, addressInfo.Validate()
|
|
}
|
|
|
|
// ToProto converts the address into to a Protobuf message for serialization.
|
|
func (a *peerAddressInfo) ToProto() *p2pproto.PeerAddressInfo {
|
|
msg := &p2pproto.PeerAddressInfo{
|
|
Address: a.Address.String(),
|
|
LastDialSuccess: &a.LastDialSuccess,
|
|
LastDialFailure: &a.LastDialFailure,
|
|
DialFailures: a.DialFailures,
|
|
}
|
|
if msg.LastDialSuccess.IsZero() {
|
|
msg.LastDialSuccess = nil
|
|
}
|
|
if msg.LastDialFailure.IsZero() {
|
|
msg.LastDialFailure = nil
|
|
}
|
|
return msg
|
|
}
|
|
|
|
// Copy returns a copy of the address info.
|
|
func (a *peerAddressInfo) Copy() peerAddressInfo {
|
|
return *a
|
|
}
|
|
|
|
// Validate validates the address info.
|
|
func (a *peerAddressInfo) Validate() error {
|
|
return a.Address.Validate()
|
|
}
|
|
|
|
// Database key prefixes.
|
|
const (
|
|
prefixPeerInfo int64 = 1
|
|
)
|
|
|
|
// keyPeerInfo generates a peerInfo database key.
|
|
func keyPeerInfo(id types.NodeID) []byte {
|
|
key, err := orderedcode.Append(nil, prefixPeerInfo, string(id))
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return key
|
|
}
|
|
|
|
// keyPeerInfoRange generates start/end keys for the entire peerInfo key range.
|
|
func keyPeerInfoRange() ([]byte, []byte) {
|
|
start, err := orderedcode.Append(nil, prefixPeerInfo, "")
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
end, err := orderedcode.Append(nil, prefixPeerInfo, orderedcode.Infinity)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return start, end
|
|
}
|