This guide is designed for beginners who want to get started with a Tendermint Core application from scratch. It does not assume that you have any prior experience with Tendermint Core.
Tendermint Core is Byzantine Fault Tolerant (BFT) middleware that takes a state transition machine - written in any programming language - and securely replicates it on many machines.
Although Tendermint Core is written in the Golang programming language, prior knowledge of it is not required for this guide. You can learn it as we go due to it's simplicity. However, you may want to go through Learn X in Y minutes Where X=Go first to familiarize yourself with the syntax.
By following along with this guide, you'll create a Tendermint Core project called kvstore, a (very) simple distributed BFT key-value store.
Running your application inside the same process as Tendermint Core will give you the best possible performance.
For other languages, your application have to communicate with Tendermint Core through a TCP, Unix domain socket or gRPC.
Please refer to the official guide for installing Go.
Verify that you have the latest version of Go installed:
$ go version
go version go1.15.x darwin/amd64
We'll start by creating a new Go project.
mkdir kvstore
cd kvstore
Inside the example directory create a main.go
file with the following content:
package main
import (
"fmt"
)
func main() {
fmt.Println("Hello, Tendermint Core")
}
When run, this should print "Hello, Tendermint Core" to the standard output.
$ go run main.go
Hello, Tendermint Core
Tendermint Core communicates with the application through the Application BlockChain Interface (ABCI). All message types are defined in the protobuf file. This allows Tendermint Core to run applications written in any programming language.
Create a file called app.go
with the following content:
package main
import (
abcitypes "github.com/tendermint/tendermint/abci/types"
)
type KVStoreApplication struct {}
var _ abcitypes.Application = (*KVStoreApplication)(nil)
func NewKVStoreApplication() *KVStoreApplication {
return &KVStoreApplication{}
}
func (KVStoreApplication) Info(req abcitypes.RequestInfo) abcitypes.ResponseInfo {
return abcitypes.ResponseInfo{}
}
func (KVStoreApplication) DeliverTx(req abcitypes.RequestDeliverTx) abcitypes.ResponseDeliverTx {
return abcitypes.ResponseDeliverTx{Code: 0}
}
func (KVStoreApplication) CheckTx(req abcitypes.RequestCheckTx) abcitypes.ResponseCheckTx {
return abcitypes.ResponseCheckTx{Code: 0}
}
func (KVStoreApplication) Commit() abcitypes.ResponseCommit {
return abcitypes.ResponseCommit{}
}
func (KVStoreApplication) Query(req abcitypes.RequestQuery) abcitypes.ResponseQuery {
return abcitypes.ResponseQuery{Code: 0}
}
func (KVStoreApplication) InitChain(req abcitypes.RequestInitChain) abcitypes.ResponseInitChain {
return abcitypes.ResponseInitChain{}
}
func (KVStoreApplication) BeginBlock(req abcitypes.RequestBeginBlock) abcitypes.ResponseBeginBlock {
return abcitypes.ResponseBeginBlock{}
}
func (KVStoreApplication) EndBlock(req abcitypes.RequestEndBlock) abcitypes.ResponseEndBlock {
return abcitypes.ResponseEndBlock{}
}
func (KVStoreApplication) ListSnapshots(abcitypes.RequestListSnapshots) abcitypes.ResponseListSnapshots {
return abcitypes.ResponseListSnapshots{}
}
func (KVStoreApplication) OfferSnapshot(abcitypes.RequestOfferSnapshot) abcitypes.ResponseOfferSnapshot {
return abcitypes.ResponseOfferSnapshot{}
}
func (KVStoreApplication) LoadSnapshotChunk(abcitypes.RequestLoadSnapshotChunk) abcitypes.ResponseLoadSnapshotChunk {
return abcitypes.ResponseLoadSnapshotChunk{}
}
func (KVStoreApplication) ApplySnapshotChunk(abcitypes.RequestApplySnapshotChunk) abcitypes.ResponseApplySnapshotChunk {
return abcitypes.ResponseApplySnapshotChunk{}
}
Now I will go through each method explaining when it's called and adding required business logic.
When a new transaction is added to the Tendermint Core, it will ask the application to check it (validate the format, signatures, etc.).
import "bytes"
func (app *KVStoreApplication) isValid(tx []byte) (code uint32) {
// check format
parts := bytes.Split(tx, []byte("="))
if len(parts) != 2 {
return 1
}
key, value := parts[0], parts[1]
// check if the same key=value already exists
err := app.db.View(func(txn *badger.Txn) error {
item, err := txn.Get(key)
if err != nil && err != badger.ErrKeyNotFound {
return err
}
if err == nil {
return item.Value(func(val []byte) error {
if bytes.Equal(val, value) {
code = 2
}
return nil
})
}
return nil
})
if err != nil {
panic(err)
}
return code
}
func (app *KVStoreApplication) CheckTx(req abcitypes.RequestCheckTx) abcitypes.ResponseCheckTx {
code := app.isValid(req.Tx)
return abcitypes.ResponseCheckTx{Code: code, GasWanted: 1}
}
Don't worry if this does not compile yet.
If the transaction does not have a form of {bytes}={bytes}
, we return 1
code. When the same key=value already exist (same key and value), we return 2
code. For others, we return a zero code indicating that they are valid.
Note that anything with non-zero code will be considered invalid (-1
, 100
,
etc.) by Tendermint Core.
Valid transactions will eventually be committed given they are not too big and have enough gas. To learn more about gas, check out "the specification".
For the underlying key-value store we'll use badger, which is an embeddable, persistent and fast key-value (KV) database.
import "github.com/dgraph-io/badger"
type KVStoreApplication struct {
db *badger.DB
currentBatch *badger.Txn
}
func NewKVStoreApplication(db *badger.DB) *KVStoreApplication {
return &KVStoreApplication{
db: db,
}
}
When Tendermint Core has decided on the block, it's transfered to the
application in 3 parts: BeginBlock
, one DeliverTx
per transaction and
EndBlock
in the end. DeliverTx are being transfered asynchronously, but the
responses are expected to come in order.
func (app *KVStoreApplication) BeginBlock(req abcitypes.RequestBeginBlock) abcitypes.ResponseBeginBlock {
app.currentBatch = app.db.NewTransaction(true)
return abcitypes.ResponseBeginBlock{}
}
Here we create a batch, which will store block's transactions.
func (app *KVStoreApplication) DeliverTx(req abcitypes.RequestDeliverTx) abcitypes.ResponseDeliverTx {
code := app.isValid(req.Tx)
if code != 0 {
return abcitypes.ResponseDeliverTx{Code: code}
}
parts := bytes.Split(req.Tx, []byte("="))
key, value := parts[0], parts[1]
err := app.currentBatch.Set(key, value)
if err != nil {
panic(err)
}
return abcitypes.ResponseDeliverTx{Code: 0}
}
If the transaction is badly formatted or the same key=value already exist, we again return the non-zero code. Otherwise, we add it to the current batch.
In the current design, a block can include incorrect transactions (those who passed CheckTx, but failed DeliverTx or transactions included by the proposer directly). This is done for performance reasons.
Note we can't commit transactions inside the DeliverTx
because in such case
Query
, which may be called in parallel, will return inconsistent data (i.e.
it will report that some value already exist even when the actual block was not
yet committed).
Commit
instructs the application to persist the new state.
func (app *KVStoreApplication) Commit() abcitypes.ResponseCommit {
app.currentBatch.Commit()
return abcitypes.ResponseCommit{Data: []byte{}}
}
Now, when the client wants to know whenever a particular key/value exist, it
will call Tendermint Core RPC /abci_query
endpoint, which in turn will call
the application's Query
method.
Applications are free to provide their own APIs. But by using Tendermint Core as a proxy, clients (including light client package) can leverage the unified API across different applications. Plus they won't have to call the otherwise separate Tendermint Core API for additional proofs.
Note we don't include a proof here.
func (app *KVStoreApplication) Query(reqQuery abcitypes.RequestQuery) (resQuery abcitypes.ResponseQuery) {
resQuery.Key = reqQuery.Data
err := app.db.View(func(txn *badger.Txn) error {
item, err := txn.Get(reqQuery.Data)
if err != nil && err != badger.ErrKeyNotFound {
return err
}
if err == badger.ErrKeyNotFound {
resQuery.Log = "does not exist"
} else {
return item.Value(func(val []byte) error {
resQuery.Log = "exists"
resQuery.Value = val
return nil
})
}
return nil
})
if err != nil {
panic(err)
}
return
}
The complete specification can be found here.
Put the following code into the "main.go" file:
package main
import (
"flag"
"fmt"
"os"
"os/signal"
"path/filepath"
"syscall"
"github.com/dgraph-io/badger"
"github.com/spf13/viper"
abci "github.com/tendermint/tendermint/abci/types"
cfg "github.com/tendermint/tendermint/config"
tmflags "github.com/tendermint/tendermint/libs/cli/flags"
"github.com/tendermint/tendermint/libs/log"
nm "github.com/tendermint/tendermint/node"
"github.com/tendermint/tendermint/p2p"
"github.com/tendermint/tendermint/privval"
"github.com/tendermint/tendermint/proxy"
)
var configFile string
func init() {
flag.StringVar(&configFile, "config", "$HOME/.tendermint/config/config.toml", "Path to config.toml")
}
func main() {
db, err := badger.Open(badger.DefaultOptions("/tmp/badger"))
if err != nil {
fmt.Fprintf(os.Stderr, "failed to open badger db: %v", err)
os.Exit(1)
}
defer db.Close()
app := NewKVStoreApplication(db)
flag.Parse()
node, err := newTendermint(app, configFile)
if err != nil {
fmt.Fprintf(os.Stderr, "%v", err)
os.Exit(2)
}
node.Start()
defer func() {
node.Stop()
node.Wait()
}()
c := make(chan os.Signal, 1)
signal.Notify(c, os.Interrupt, syscall.SIGTERM)
<-c
os.Exit(0)
}
func newTendermint(app abci.Application, configFile string) (*nm.Node, error) {
// read config
config := cfg.DefaultValidatorConfig()
config.RootDir = filepath.Dir(filepath.Dir(configFile))
viper.SetConfigFile(configFile)
if err := viper.ReadInConfig(); err != nil {
return nil, fmt.Errorf("viper failed to read config file: %w", err)
}
if err := viper.Unmarshal(config); err != nil {
return nil, fmt.Errorf("viper failed to unmarshal config: %w", err)
}
if err := config.ValidateBasic(); err != nil {
return nil, fmt.Errorf("config is invalid: %w", err)
}
// create logger
logger := log.NewTMLogger(log.NewSyncWriter(os.Stdout))
var err error
logger, err = tmflags.ParseLogLevel(config.LogLevel, logger, cfg.DefaultLogLevel)
if err != nil {
return nil, fmt.Errorf("failed to parse log level: %w", err)
}
// read private validator
pv := privval.LoadFilePV(
config.PrivValidatorKeyFile(),
config.PrivValidatorStateFile(),
)
// read node key
nodeKey, err := p2p.LoadNodeKey(config.NodeKeyFile())
if err != nil {
return nil, fmt.Errorf("failed to load node's key: %w", err)
}
// create node
node, err := nm.NewNode(
config,
pv,
nodeKey,
proxy.NewLocalClientCreator(app),
nm.DefaultGenesisDocProviderFunc(config),
nm.DefaultDBProvider,
nm.DefaultMetricsProvider(config.Instrumentation),
logger)
if err != nil {
return nil, fmt.Errorf("failed to create new Tendermint node: %w", err)
}
return node, nil
}
This is a huge blob of code, so let's break it down into pieces.
First, we initialize the Badger database and create an app instance:
db, err := badger.Open(badger.DefaultOptions("/tmp/badger"))
if err != nil {
fmt.Fprintf(os.Stderr, "failed to open badger db: %v", err)
os.Exit(1)
}
defer db.Close()
app := NewKVStoreApplication(db)
For Windows users, restarting this app will make badger throw an error as it requires value log to be truncated. For more information on this, visit here. This can be avoided by setting the truncate option to true, like this:
db, err := badger.Open(badger.DefaultOptions("/tmp/badger").WithTruncate(true))
Then we use it to create a Tendermint Core Node
instance:
flag.Parse()
node, err := newTendermint(app, configFile)
if err != nil {
fmt.Fprintf(os.Stderr, "%v", err)
os.Exit(2)
}
...
// create node
node, err := nm.NewNode(
config,
pv,
nodeKey,
proxy.NewLocalClientCreator(app),
nm.DefaultGenesisDocProviderFunc(config),
nm.DefaultDBProvider,
nm.DefaultMetricsProvider(config.Instrumentation),
logger)
if err != nil {
return nil, fmt.Errorf("failed to create new Tendermint node: %w", err)
}
NewNode
requires a few things including a configuration file, a private
validator, a node key and a few others in order to construct the full node.
Note we use proxy.NewLocalClientCreator
here to create a local client instead
of one communicating through a socket or gRPC.
viper is being used for reading the config,
which we will generate later using the tendermint init
command.
config := cfg.DefaultValidatorConfig()
config.RootDir = filepath.Dir(filepath.Dir(configFile))
viper.SetConfigFile(configFile)
if err := viper.ReadInConfig(); err != nil {
return nil, fmt.Errorf("viper failed to read config file: %w", err)
}
if err := viper.Unmarshal(config); err != nil {
return nil, fmt.Errorf("viper failed to unmarshal config: %w", err)
}
if err := config.ValidateBasic(); err != nil {
return nil, fmt.Errorf("config is invalid: %w", err)
}
We use FilePV
, which is a private validator (i.e. thing which signs consensus
messages). Normally, you would use SignerRemote
to connect to an external
HSM.
pv := privval.LoadFilePV(
config.PrivValidatorKeyFile(),
config.PrivValidatorStateFile(),
)
nodeKey
is needed to identify the node in a p2p network.
nodeKey, err := p2p.LoadNodeKey(config.NodeKeyFile())
if err != nil {
return nil, fmt.Errorf("failed to load node's key: %w", err)
}
As for the logger, we use the build-in library, which provides a nice abstraction over go-kit's logger.
logger := log.NewTMLogger(log.NewSyncWriter(os.Stdout))
var err error
logger, err = tmflags.ParseLogLevel(config.LogLevel, logger, cfg.DefaultLogLevel())
if err != nil {
return nil, fmt.Errorf("failed to parse log level: %w", err)
}
Finally, we start the node and add some signal handling to gracefully stop it upon receiving SIGTERM or Ctrl-C.
node.Start()
defer func() {
node.Stop()
node.Wait()
}()
c := make(chan os.Signal, 1)
signal.Notify(c, os.Interrupt, syscall.SIGTERM)
<-c
os.Exit(0)
We are going to use Go modules for dependency management.
export GO111MODULE=on
go mod init github.com/me/example
This should create a go.mod
file. The current tutorial only works with
the master branch of Tendermint. so let's make sure we're using the latest version:
go get github.com/tendermint/tendermint@master
This will populate the go.mod
with a release number followed by a hash for Tendermint.
module github.com/me/example
go 1.15
require (
github.com/dgraph-io/badger v1.6.2
github.com/tendermint/tendermint <vX>
)
Now we can build the binary:
go build
To create a default configuration, nodeKey and private validator files, let's
execute tendermint init validator
. But before we do that, we will need to install
Tendermint Core. Please refer to the official
guide. If you're
installing from source, don't forget to checkout the latest release (git checkout vX.Y.Z
). Don't forget to check that the application uses the same
major version.
$ rm -rf /tmp/example
$ TMHOME="/tmp/example" tendermint init validator
I[2019-07-16|18:40:36.480] Generated private validator module=main keyFile=/tmp/example/config/priv_validator_key.json stateFile=/tmp/example2/data/priv_validator_state.json
I[2019-07-16|18:40:36.481] Generated node key module=main path=/tmp/example/config/node_key.json
I[2019-07-16|18:40:36.482] Generated genesis file module=main path=/tmp/example/config/genesis.json
I[2019-07-16|18:40:36.483] Generated config module=main mode=validator
We are ready to start our application:
$ ./example -config "/tmp/example/config/config.toml"
badger 2019/07/16 18:42:25 INFO: All 0 tables opened in 0s
badger 2019/07/16 18:42:25 INFO: Replaying file id: 0 at offset: 0
badger 2019/07/16 18:42:25 INFO: Replay took: 695.227s
E[2019-07-16|18:42:25.818] Couldn't connect to any seeds module=p2p
I[2019-07-16|18:42:26.853] Executed block module=state height=1 validTxs=0 invalidTxs=0
I[2019-07-16|18:42:26.865] Committed state module=state height=1 txs=0 appHash=
Now open another tab in your terminal and try sending a transaction:
$ curl -s 'localhost:26657/broadcast_tx_commit?tx="tendermint=rocks"'
{
"jsonrpc": "2.0",
"id": "",
"result": {
"check_tx": {
"gasWanted": "1"
},
"deliver_tx": {},
"hash": "1B3C5A1093DB952C331B1749A21DCCBB0F6C7F4E0055CD04D16346472FC60EC6",
"height": "128"
}
}
Response should contain the height where this transaction was committed.
Now let's check if the given key now exists and its value:
$ curl -s 'localhost:26657/abci_query?data="tendermint"'
{
"jsonrpc": "2.0",
"id": "",
"result": {
"response": {
"log": "exists",
"key": "dGVuZGVybWludA==",
"value": "cm9ja3M="
}
}
}
"dGVuZGVybWludA==" and "cm9ja3M=" are the base64-encoding of the ASCII of "tendermint" and "rocks" accordingly.
I hope everything went smoothly and your first, but hopefully not the last, Tendermint Core application is up and running. If not, please open an issue on Github. To dig deeper, read the docs.